Chapter-or Computer Organisation
Intratuction te esenputer
The word "completer"" comes from the word "compute which means to calculate. Hence a computer is normally considered to be a calculating device, which can perform arithmetic operations at high speed.

More accurately, a computer may be defined as a device, which operates upon data

Data is the raw material used as input to data processing and information is the processed data obtained as the output of data procesing. Charetersties of computers

1. Automatic -

A machine is said to be automatic, if it works by itself without human interrenicion. Compute are automatic machines
2. Speed:
A computer is a very fast devise. It can perform in a few seconds.

The unit of speed are the microsecond $\left(10^{-6}\right)$, nano second $\left(10^{-9}\right)$, picoseconds $\left(10^{-12}\right)$
3. Accuracy
in addition to being very fast, computers are very accurate. The accuracy of a computer is consistently high.
4. Diligence

A computer is free from tiredness, lack. of concentration. It can work for hours without creating cary error.
5. Versatility type of wonk at the sametime.

Every piece of information can be retained as long as desired by the user, and can be recalled. as and when required.
7. No I.Q.
8. No Feelings:- Computers are devoid of emotions
-0
M Evolution of computers
Abacus:
i. It is the first counting device which was developed in china more than 3000 yeans ago. This device basically consists of a rectangular wooden frame and beads. counting, was done by moving the beads from one end of the frame to the other.

It is a device which contains a set of Napier!'s Bones rods made of bones.

It was developed by John Napier, a Scottish Mathematician and hence the device was named as Napier's Bones.

The device was mainly, developed For performing multiplication and division.
Pascaline
Pascatine is a calculating machine developed by Blacise Pascal; a French Mathematician. It was the first device with an ability to perform additions and subtractions on whole numbers Punched Card System

Punched Card System is used for storing and retrieving data. This was invented by Herman Hollerith, an American Statistician in US census Bureau.

Basic Computer Organization
All computer systems perform the following five basic operations, for converting raw iopuA data into information, which is useful to their users:

1. Inputting: The process of entering data and instructions into the computer system
2. Storing :- Saving data and instructions bo make them readily available for inctial or addition al processing, as and when required.
3. Processing: Performing arithmetic operations or logical operations on data, to convert them into useful information.
4.: Outputting :- The process of producing useful information or results for the user
4. Controlling :- Directing the manner and sequence in which all of the above operations are performed.
Storage Unit

Input unit
The following functions are performed by an input unit : data from the outside world and data in
2. It converts. these instructions and data on computer acceptable form.
3. It supplies the converted instruction and doa to the computer system for further processing.
The following functions are performed by
Output unit :an output unit

1. It accepts the results produced by the computer which are in coded form
2. It converts these coded result to human acceptable form:
Bn $9 t$ supplies the converted results to be outside world:
Storage unit
The specific functions of the storage unit
3. The data and instructions required for processing are to hold
4. The intermediate result of processing

3 : Final result of proressengs before these results are released to an oulpuie device.. The storage init of all computers is comprised of the following 2 types of storage: 1. Primary storage

2 . Secondary storage

Primary storage :-
also known as main memory
It is used to hold pieces of program instructions and data, intermediate results of processing, and recently produced results of processing of the jobs.

As soon as the computer system is switched off or reset, the information held in the primary storage disappears.

Leincted storage capautly because it is very expensive.
made up of semiconductor devices:
Secondary storage:-
also known as axillary storage.
If is used to supplement the limited storage capacity and the volatile characterstor of primary storage.
cheaper and non volatile.
Most commonly used is the magnetic dish.
Arithmetic Logic Unit
All arithmetic calculations are performed and all comparisions are MADE CN the flU.
Control Unit
The control unit acts as a central nervous system, for the other components of the computer system. It manages and coordinates the entire computer system
Central Processch Unit
It is the brain of the computer system. control unit + Arithinctec logic Unset = CPU
amp Generation of Computer :-
First generation (1940-1956)
\rightarrow In this generation of computer the technology used is vacuum tube.
\rightarrow Vacuum tube are fragile, glass device that could control and amplify the electronic signal.
\rightarrow Instructions were written in machile level language which is the low level language consisting of O1.1.

$$
\begin{aligned}
e-g \rightarrow & E N I A C \\
& E D V A C \\
& \text { UNIV AC }
\end{aligned}
$$

Advantages:-
\Rightarrow Latest calculating device at that time. Disadvantage :-
\rightarrow bulky in size, requiring a large room for installation.
\rightarrow Generated a lot of heat.
\rightarrow Consume a lot of electricity
A Constant maintaindnce is required because of frequent hardware failure.
\rightarrow Very expenscrey
Second Generation (1956-19.64).
Second generation of computers were manufactured using transistor.

Transistor were more reliable electronic switching device made up of the material called semiconductor

Symbolic or Assembly languages are west <.g :- UNIVAC III IBM 3070

Advantages -
Faster, cheaper, smaller a more reliable consumes less electriaty

Disadvantage :-

- Commercial production of these computers were difficult
Thing Generation (1964-1971)
Used technology is integrated corciint. Several electronic components such as transistor. register and capacitor were placed on a silicon.

Integrated circuit contains only about $20-20$ chop. components named Small scale Integration Later it become possible to ingrate, about 100 components on a single chip named Medium scale integration (MSI)

Tine sharing $O S$ is used.

$$
\begin{aligned}
& \text { UNIVAC } 1100 \\
& \quad \text { IBM } 360 / 370
\end{aligned}
$$

Advantages :-
Faster than second Generation of computer. Smaller, cheaper 2 more mable Widely used for epseificic scientific and business application.

It pas faster and larger primary \& secondary memory
Disadvantages :-
Dofficult to maintain.
Got heated very quickly.

Fourth Generation (1971.1989)
It uses the technology called large scale Integration (LSI) which is integrated over 30,000 electronic circuit of a single che p and it was followed by very large scale integration (V'LSI) about i million electronic components on a single chop.

This technology leads to the creation of microprocessor.

In this generation GUI, Mouse and handheld devices are used.
e. $g \rightarrow$ (a) IBM PC
(b) Apple II

Advantages:-
Smaller, cheaper, foster and more reliable than $3^{\text {rd }}$ generation.

It has faster and larger primary and secondary memory:
Disadvantage :-
They were not an intellogent system.
Fifth Generation (1989 onwards)
It uses the technology called ULtra large scale integration

These computers are completely based on the new concept of artificial intelligence.

It uses parallel processing $O S$ and super conductor technology.

Artificial intelligence touches the area like gaming, expert by stem, natural languages, rob tics etc. ex IBM notebook

Evolution of Computers
Abacus
It is the first counting device which was developed in China rove than 3000 years ago. This device basically consists of a rectangular wooden frame and treads. Counting was done by moving the beads from one end of the frame to the other.

It is a device which contains a set of Napier's Bone rods made of bones:

It was developed by John Napier, a scottish Mathematician and hence the device was named as Napier/s. Bones.

The device was mainly developed for performing multiplication and division.
Pascaline :-
Pascaline is i calculating machine developed by BLase. Pascal, a French Mathematician in 164.5 .. with an ability to
It was the First device with on

It was the first device perform additions and subtractions on whole: numbers.
Difference Engine
In 1822 Charles Babbage invented a Difference Engine.

The purpose of this device was to calculate the roots of polynomial equations and prepare astronomy table for British Nary.

He upgraded this to, invent an Analytical engine which could store program instructions initially coded on punched cards and subsequent ry
shared

Punched card equipment
It is used for storing and rdriving data. This is invented by Herman. Hollerith, … an American Statistician ..
Atanasoff-Berry Computer
It was invented by J.V. tanaso ff and C. Berry

91 uses vacume tubes for both data storage and data computation.

Subsequently ENIAC was designed and accepted as the general puipose computer UNIVAC-1

In 1945, John von Newmann firstgave the ida of sharing the same ntemali, memory for storing both data and enstruation, which was subsequently adopted en every computer. ofganizátion.

torpor
Analog computers
\rightarrow Mostly used in industries in process control activities
\rightarrow Work on analog data such as variation in temperature, pressure, seed, voltage etc.
\rightarrow They are specific to a particular application areaTherefore cost of such computer differ from application to application on the complexity.
\rightarrow Uses are very limited.
Digital computer
\rightarrow General purpose computers, which work on digital/binary data.
\rightarrow speed and accuracy very high.
Hybrid computer
Used to control the entire process
The analog feature of such computer enables it to measure the physical quantities such as temperature, pressure, voltage level etc. and convert them to digital dato. These data are then processed by the computer by using its digital. data processing capability.

The $0 / p$ may be taken in a paper as hard copy, may be seen on a display device a may be converted into analog form 70 automateally control various process.

Digital computers are fierther classified onto 4 types.
Super Computer:-
\rightarrow specifically designed to maximize the processing of floating point instructions
\rightarrow This is possible because of parallebprocessing technique which implements multiple processors to work in parallel manner.
\rightarrow Very expensive and used in very high end numerical processing, geographical information system etc.
$e-g: \rightarrow$ Cray; Param, Anupam
\rightarrow Speed is measured in GFLOPs i-e Gigo. Floating Point Operations Per second.
\rightarrow uses their own os and programming language So vary from computer to computer Mainframe Computer
\rightarrow Intended for substantial high volume data processctig.
\rightarrow Large primary memory
\rightarrow Substantial processing capabilities (MIPS)

- recessing speed:- 30-100 MIPS

Word Length - More than 64 bots
Io device - wide range of perphered denies Internal Storage:- More than 1 GB Application
Space research, university connectivity, WAN1 implement

Mini Computers
\rightarrow Fairly Large primary memory
\rightarrow Medium scale processing capability i.e lesser than mainframe but higher than personal computers
\rightarrow Can connect upto 500 terminals on UN.
\rightarrow Supports wide range of application areas,
Explication
In the field of engineering and scientific organizations Educational Institutes
Universities
Small/ Medium business organization.
Specification
Processing - 10 to 30 MIPS
Word length:- 32 bots
I/0 dence -Wide range of 40 advices con be conned Internal storage - 66-512 MB.

$$
e-g \rightarrow I B M
$$

Burroughs
Micro computer
smallest and least expensive computers pCs.
Typical Features
portable require min m power
Processing power is appropriate.
Memory capacity is sufficient!.
Ease of use and support to various kind of
Microcomputers $-P C$
-PCXT Extaded Teen nologs
PCAT Adrana Technology

Typical specification of $P C$
Processor - I $8086 / 28088$ micro processor
Memory - 640 KB of RAM
Two 360 K Floppy disk dane
Numerical processor - 2 sort
System bus - 8 bot databis \&r 16 bit address hs Clocle spued - $8 \mathrm{MHz}_{2}$
PC AT
Processor - 80386/80486/Pentum
Memory - $2 M B-512 M B$

- Ropy disk drcue-1.4MB

Hard 4 I $=1$ LIMB bo GO
system bus - ? 32-64 best
$O S-M S D D^{\prime} S$, windows, UNix, convex
Clock speed Upto 3 GHz
imp Input Devices
\rightarrow Data and instructions are entered into a computer through input devices.
\rightarrow An input device converts an input data and instructions. into binary form which can be: accepted by the computer
Different types of input derices are keyboard, mouse, scanner, touch screen, trackball ,joystick Keyboard

It is the most common input device.
The keyboard contains diphanumeric keys, special keys, fieriction keys.

Alphanumeric keys are oed to input most of the letters $(A-Z)$, numbers $(0-9)$ and other. characters Like space, $1,\langle \rangle, j:+$ @ $\# \underset{p}{ } \%$ $n \& *()-t=1 \mid c 〕\{ \}$

The special keys are Enter or Retied key, the Backspace ky, the Delete ky, the Insert key, the shift key, the capslock key, the Hum lock key, the Tab key, the Alt key

The functional keys are used to perform a set of operations.
Mouse
It is the most widely used pointing device Mouse is designed to fit comfortably under the palm of our hand, so that movement of orth we can control the novement of the pointer on the screen and make selection from the screen by pressing the button provided on the

- Now a days optical mouse are becoming popular which does not have a ball rather functions with il LED and a sensing mechanism to detect a location on the screen.
(iii) Trackball
\rightarrow It is a pointing device simolar to mouse. \rightarrow The ball is rolled with finger to move the cursor around the screen:
\rightarrow It is used on the laptop where there is no space for conventional mouse.
(iv). Joystick ${ }^{2}$

Joy stick is an input device used genially
computer games. in computer games.

It is a handheld control stick that lows a player to control the movement's of cursor on monctor:
(v) Touch Screen 1-

In this device user only touch; the montor
In this device user on ty the computer.
screen to input data in to $e-g \rightarrow$ ATM counter
(vi) Scanner

It is a kind of input device which converts printed text, graphics i pictures into a dogtar form.

2 types of scanners are
(a) Apteral scanner
(a) Optral scanner
(b) Magnetic ink character reader Scanner

\rightarrow Optical Image Reader (OLR)
This scanner optically. scan image, printed text, handwriting which is conversed into digital form.

By placing the picture on the flat transparent surface of the scanner, any hard copy can be converted into the digital fam.
\rightarrow Optical Mark Reader (OMR)
This scanner are capable of recognizing a specifrect kine ne of mark in ode by pencil or pen on special designed OMR sheet

These marks are detected by an OMR and the corresponding signal are sot to the procession
\rightarrow Optical Barcode Reader (am)
Data code is in the form of small lines of varying thickness and spacing between them.

An OBR can read such bars and converted them in to electrical puss to be processed by computer.
(b) Magnetic. Ink Character Rexder(MICR) :-

It is widely used by banks to process Large volumes of cheques and deroscit forms written everyday.

A special ink is called magnetic en (ink with iron oxide particles) is used to write character on the cheque and deposit forms which are to be processed by an IMICR bike bank identification code, account number etc.
(viii) Biometric Sensor

A biometric sensor is an input device that recognizes individuals based on their physical or behavioural tracts (fingerprint, voice, face, etc) It converts these traits to electrical signals by tirmsorngothe
(ix) Web Camera

It is a video camera that captures images as data for a computer system \& is normally connected to a computer through USB ports.
\leqslant Output Devices
The output device receives information from the computer: and provide them to user.

It converts machine readable information into people readable 据mi is

M 0 - Monitor Printer, Speaker, Plotter etc.
(a) Monitor

Also known as Visical Display Unit.
For desktop computers, cathode ray monitors (CR? are graduidlly being replaced by flat screen monitors sech as the-kiquid Crystal Displays (LCD) and Thin Film Transistor (TET) displays used with Laptop computers because they use. less power and take up less space
Saftcopy
A softcopy is an output, which is not produced on a paper or some material, which can be touched or carried to another place in physical form.

These are temporary in nature and vanish after the use. Examples of soft copy are output on a monitor or sound produced by voice response system.

Hard copy
It is an output on a paper or any otter material which can be touched and carried for being shown to others. These are permanent in nature.
O / p^{s} of printer and plotters are hard copy ont puts
(b) Printer :-

It is an output device that produces a hardcopy of data.

Printers can be divided into 3 categories by the way they print
Serial Printer - Also called character printer. Print a single character at a time. inexpensive and slow.
Line Printer - Print a line at a time
: Expensive and fast
Page Printer - Also called a Laser printer. Prints a page at a time. Usually expensive.
Prchiters are classified into 2 forms according to the use. of hammer
Impact Printers :- Printers which has a physical contact between print head and paper while printing. Hammers hits ribbons; papers or print head.
e.g:- Dot matrix printer

Daisy wheel printer.
Drum printer
Chain printer
Nonimpact printers: Printers which does no have a physical contact between the pi head and paper during printing don't have a hammer.
eg-inkjet printer, laser printer
(c) Plotter-:

It is a special purpose output device capable of printing sophisticated graphs, charts, maps and three dimensional graphics as well as high quality colored documents

It can produce for large printout than normal printer.

Mainly used in many engineering applications, design like architectural plan, design for mechanical components of an aircraft or a car.

There are 2 main types of plotter.
\rightarrow Drum Plotter.
\rightarrow Flatbed Plotter
(d) Screen Image Projector (SIP) ;

It is used to project information from a computer onto a large screen such as a doth screen or a wall.
(e) Speaker

Also known as voice recognidsation systemIt produces sound..
They receive audio input from the computers sound card and produce audio $/ P$ in the form of sound waves.

Classification of computer memory

Register Memory
\rightarrow IE is integrated inside CPU:
\rightarrow It consists of a number of flipflops arranged ir a certain manner.
\rightarrow Small capacity
\rightarrow used for storing data 2 instruction temporarily during the execution of an instruction:
\rightarrow Special purpose registers :-M*R,MDR,IR,PC
\rightarrow Fastest memory
Cache memory
It is a small memory situated between CPV and main memory.

The purpose of this memory, is to hold/store frequently neediest instruction or date from the main memory during the execution process.

This is a semiconductor memory which is having very low access time and hence is a fast memory.

Mace Memory
There are 2 types of man memory ie Random access memory Read only memory
RAM is volatile in nature ie when the power goes off, the data stored in RAM automatically erased.

Used for both read \& write operation 2 types - Static RAM \& Dynamerc RAM
ROM used to store small system programs permanently.

Nonvolatile in nature which means data, stored in ROM remains even after the power goes off. various types, of ROMA ass there,
PROM - Programmable ROM
used once to write data
EPROM-Erasable Programmable ROM used for both erasing and progreimnuing the RDM
EEROM - Electrically erasable programmable ROM UVIPROM - Ultra Violet erasable programmable ROM
Axillary Memory / Secondary Memory
The axillary memory or secondary memory is a memory whey e fatal \& program are storeel permanently.

$$
\begin{aligned}
e g \rightarrow & \text { Floppy disk } & & 1.44 \mathrm{MB} \\
& \text { Hard disk } & & 20 \mathrm{MB}-80 \mathrm{~GB} \\
& C D-R O M & & 680 \mathrm{MB}-700 \mathrm{MB}
\end{aligned}
$$

Back up memory
Used by the user for keeping backup of important data for future reference.

Magnetic tapes and CDROM's are mainly used .'

Difference between RAM \& ROM M

RAM
i) It refers to Random Access Memory.
ii) Temporary
iii) We can read \& write
iv) Volatile in nature.

ROM

1) It refers to Read only Memory,
ii) Permanent:
Iii) It is a read only memory.
iv) Nonvolatile in nature

Software Concepts
A completer system mainly comprises ? EEgaties of resources ie. computer hardware 8 cotegafies of resources ie. computer computer software.

The computer hardware refers to all the physical componerri- presents in a computer which. we can tolich ie all ti, tangible components. \rightarrow Similarly computer software is the set of instructions which instructs the hardware what to do and how to do d. Com
\rightarrow Computer software can have various functions such as controlling the hardware, communication with other software etc.
\rightarrow Computer software cant be touched physically \rightarrow It can be classified into 2 types.
a) System software
b) Application software

ICc) Utility software
"id) Device drivers
System software:-
System software are designed to control the operation of computer hardware and support
it for errorftee computation. it for errorfree computation",

Some common system softwares are.
\rightarrow Operating system
\rightarrow Language Processor

- Device Drives
\rightarrow Utility Programs

The Operating System is a system software which is responsible for managing the various computer resources.

Language processors are the catgory, offing system software, which is responsible for trastating and interpreting the program written by using programming Languages. $e-g \rightarrow$ Compeers; Interpreter, Assemblers 1. Device Drivers are the system software which generally comes along with a perophal devil which is used to establish ancirafree and An easy communication "between rierecc and computer. Utility Programs are capable of interacting with the computer hardware for prions purpose. Generally for system maintenance adivity what of $g \rightarrow$ antevorio software, data canptesson wo Application Softioares us ns te

It is a set of lonit/mare program designed to solve a specific pig rat or a. specific task such, as Worany hospital.
management wysm Difference between System software k applecafion soffiven

Gmo Operating System
Operating system is the software, which is installed in a computer to act as an interface between computer and wee.

Operating system is the program enter being initially loaded into the computer by a boot program manages all the other programs in a program.

Functions of OS:
\rightarrow Resource management
\rightarrow Processor managemat
\rightarrow Mernory management
\rightarrow Device management
\rightarrow Information management

Resource Management
\rightarrow Keeping track of all available resources
\rightarrow Allocation of resources to the various requesting jobs.
\rightarrow Deallocation of resources.
Process Management
\rightarrow Keeping track of all actuve processes and allocation of processors to various ativic processes
\rightarrow Creation of child processes and termination of processes, assigning and changing the priority of the processes, block and, allowing a process, suspending, a process, ddayong a process.
Memory management Allocating the memory to different: process and deallocation of memory from proem

Device management
Allocation of davies to process and deallocation of devices.

Nantypes of OS
$\rightarrow O S$ are broadly gasified into 2 groups
(a) Single user
(b) Multi user
(a) Single User:- This OS allows single user

This type of $O S$ is designed to run either
This type of OS is designed to run
one job at a time or support multiple tasking of the
same time.

$$
l g \rightarrow \text { Windows } 98 \text {, } \times p
$$

(b) Multi user :-

This type of os allows different users to Vital advantage of the compusercsources simultaneoubte take advantage of
$\mathrm{e} \cdot \mathrm{g} \rightarrow$ UNIX, $\frac{\text { LINUX }}{\text { niUltiver. }}$

Some of the typical Operatagnsystrm are
(a) Batch Operating System:

- Batch processing System supports processing of jobs one at a time The jobs are submitted on a batch. It is the responsibaty of the operating
I batch. It is thelresponsibory si stem to schedule the one bo one, assign system resources one.
(b) Multiprogramming system

The drawback of bathe processenges system is that it goes not provide optimum cpu utilization:

Multiprogramming utilizes, maximum CPU time by running multiple programs somultaneouly

In order to increase the resource utilization system supporting multiprogramming approach allow more than one task to utilize the crutine a) any movement

The OS picks one of the program ant starts executing. During execution of program it may need input, output operation to complete. In a sequential execution environment the CPU would sit idle. But in a multiprogampineng system the OS will simply switch over the nat program.
(c) Multi processing System

This system works with 2 al more CPU within a single computer system :
I. In this system, all CPUS may be equal or some may be reserved for special purposes:

Multiprocessing os enables several programs to mont concurrently:
 and distribute among the multiple hes at various terminals in allows users to stine the Time sharing OS allows...
 Each user to allocated Past particular time slotrin between users, is so fast
The switching be on The switching that he/she user getting thing that each user think that he/she os getting in e system resource cont onvously
(e) Real time $\frac{(R T O Q)}{\text { system }}$

In this OS the total correctness of an operation depends not only upon its logical correctness, butalso upon the time in which it is performed.
(f) Network Operating System

It is the software that includes special functions for connecting computers and delores into a local-area network

It controls a newark, and its message into a la a network access by multiple traffic and queues, controls accel as files and users to ry, resources s ministrative functions
users to yo
\because provides for certain
\quad including security. $e \cdot g \rightarrow$ Wondrous s NT, No wares, Unix, Mae OS, ex. x $e \cdot g \rightarrow$ Wend n BOWS \& UNIX
Features of DOS, WNDOWS \& NJ N
Disk Operation System iv
 The fersitaversion B bell Gates n or
by
for IBM by Bill Gates
IX: No. to The mach functions of resources manage disk $f i$, allocate
vil accordeng to the req... 11 ... Nr

Features of DOS
\rightarrow Single User OS
\rightarrow provides a hierarchical file system and supports many application packages.
\rightarrow command based OS :
\rightarrow Internal command
\xrightarrow{p} Eternal command
Internal commands ane oncluded on command con file
ii) where an each external command reseda, on Weal where seat ate files'
ar DOS internal commands
ed -change the current directory
md =1 make a neo directory.
chs - clear the screen
dor, To display the directory contents : 1
rd To venging/delete directory
ren - To rename a feledirectory , , , le 7
. 29
date - display the current e date.
time - 4 a u tome
ser -
ver- \quad a version of to another 7
copy - copy one or more fades to another location
expos - To quit the COMMMANP SCNM
0OS external command
External commands pesiffe en sep crate gives on your hard drive and haidelran extension of TOM, EXE, or, BAT.
diskcopy.com - Copies the content of ore floppy disk to another
attrib-exe sets the read-write exante attribute of a file
tree. com. Displays the entire file structure en a tree manner

Unix
\rightarrow Developed in 1969 by a group of AT \& T employees at B 'll labs incluting Ken Thompson, Dennis Ritchic, Douglas Molroy and Joe ossanna \rightarrow It is functionally orgapzed at 3 levels: * The kernel which scheddes tasks and manage storage.

* The shell which connie and interprets user ls commands, calls programs from, memory, and executes them

4 The tools and applisdions that offers. additional functionality to the OO N/

Features of UOKX in Alstorit
\rightarrow Portability \rightarrow more from one brand of permeates inri forgive from one ide changes nat: completer to an they with a men language. Therefore it as it is writ che anostly 20 in $\frac{C}{1 H}$ n ak suitable for is easy to modify thedostro mare zig oo no any hiardugare.
\rightarrow Machine independent \rightarrow hates fac machine architecture \rightarrow Machine and in easier to which application macing
\rightarrow from user, making it easier to nun popping machine. supports multiple simultaneous \rightarrow Multicaser operating system supports multiple simult
\rightarrow Hierarchical file system to store information
\rightarrow Unix shell provides the user required services
\rightarrow Utility module
\rightarrow Pipes \& fitters enables the user to gave multiple commands in a single command i.
\rightarrow Security mectianism which does not allow any program to enter cento the core part : 1 :"
Unix Commands ${ }^{\text {H }}$
cp-copy a file
Lp:- To print a free
cd - To change directory
mkdor-To create a directory
render - To delete oigdorectory
date - To print the t umprent date
who-Dosplay the current wi il
cat create \& display the contents of a file chmod-Change read-hucte-execute permission $v i$ - involves the vieditor to edit fulls poo- displays the current directory:
All the unix commands has to oven in lower. case alphabets as X No X command interpreter is (r base sensitive.
up UVindoces operating System fol -

- 1 víndowo operating System
 on a personal computersit.
sutortidos, minuses of windows operating system

 menu and icons The quIt OKs are operated by using mans.

At the s / w pogrom o

- Desktop display area that represols the kind elf objects one might find on a real desktop: documents
- Icon is a small graphical symbol which represents a particular executable program
- Folder ※ directory en DOS Wi can create various folders on the storage dersel to kep relevant file in the gooldimi
- Taskbar normally present gat the bottom of the screen, contains thepactive appleteion program
- TeHebar normally present at the pop office wordan containskthe tithe of pop that so nd an id
- Menubore present just below the ti ld par of the window $\&$ contains pull down anim n item.
- crisis. A window contains vertical scrollooriand. horiztontabigoroll bar if the normal wend ow size is larger than the opened window vIA.
- A tool bar es generally displayed just below the menubar, contains buttons forrsarcous toots EAt the top right corner, there ore 5 buttons
 (apple is closed, but dell ruining). inocubaw ocopies ital semen)

- Dialogue box s. provide the serpent pardingeters. to entexntext for setting disterils dedirgols \&
- Accessory contain frequ pisuist to ks for
- Control Panel contains various maintenance, adding/removog program. system maintenance, adding/entere keondary storage My computer contains the entire ducted files
Reaclebin contains all the dele

Programming language
computer can only understand binary data. But it is too difficult for a normal programmer learn the langluage of 0 \& 1 land write program by wing them Therefore, programmong Panguage is invented There ares z cateores of programming anguage
 embly lodiguage firoma, voover
(ii) Assemblyl anguagl uinmo, wounst--

\rightarrow also knoun ais' low leve t onest fomat.

 Evorth posidu sent wermestant on ont difut the (i) Machine qupendant to hare anssdea aboris
 volroncomputer handuare.
(3ID Programs are more prone to mand mady. (iv) Dofficult to wing wrstang iwolsid is slot friendly sta/ user/programmion ai c) Hith

Assembly langung
Frograms are written using pinemonic codes Mmemises the probability of error
(i) An instruction is given by asing pnemonic codeo
(ii) Numeric address location can be addressed by using loineny degol alphanumare varoable
Gach instruction consist of 2 parts 2 pes II opcoten aiges the operand.
Opeode - tells,n the comption ohat topdps.
Operand gives the addrese of operand on whois the operation will be 19 Adventage
\rightarrow Easicri to understand crors ond dobuggong
\rightarrow Easer for lociating errereng anmanion Linctation apr p bexiocy
\rightarrow Machine dependant \rightarrow vers equired

High Level language
A ligh level langlage a progromming
\rightarrow guage, where a programmer on write progra in English, like language.
\rightarrow It is user friendly. 9 HL has to
\rightarrow But A program / Wrattan en intexpreted go through a translator, wipere binary fomat into the corresponding b

Advantage
\rightarrow Machine independent.
\rightarrow Easier to learn and use
\rightarrow gives min no. of errors
\rightarrow documentation part os better
\rightarrow Easy to modify $\&$ maintain
Compiler \& interpreter
Compiler
Ot is a program, which translates a high bevel Language program into a machine level language A compiler works with $3^{\text {rd }}$ generation languages such as Java, C \& nigher level language pharacterstics

- Spends a lot of time analyzing and processing the program.
- The resulting excoptable is some form of machine-spectoe binary code.
- The computer hardware fentepprets the. resulting code. arcution io fast Jove

Interpreter
The language processor ciobrich converts a high language processor into marline language line by line as well as execute il

If there is any error \therefore the program, translation and execution stops and the error is reported for debugging. The conversion and execution resumes only after the error as rectified.

This a slow process and consumes high memory as the interpreter is also required: to execute the correct code along with reporting the errors
Difference between computer and interpreter
compiler
It saves the machine code permanently for future. reference
Occupies more memory
occuppeless memory
stover.
Faster
Interpreter
The trachine code produed by interpreter is na saved. stover. $17 c 11$

Comparison between Dos \& Window.
klindoins

1. It is graphics user - interface
2. Powerful \& faster
3.. It provides in-built commands in various applications \& accessores. which can be used on
aa mouse click.
3. Virtually all DOS commands 4. Not available are available in WINDows
L5 provides a multitasking 5 . It does not provide environment.
4. It supports graphics

Difference between UNIX \& DOS
UNIX

1. Powerful OS
2. Supports multitasking. and multiprogramming environment and hierarchical file system
3. Supports visual display and graphics
4. Supports vietworking of computers
5 Secure
5. support conapts of sinelleng and heme.
7 ri en wexonosting services
\because Less powerful $O S$
2- Does not support multitasking and multiprogramming environment and hierarchal file system.
3- Does not support visual display and graphics
\$ Does not supports. networking of computers
6 Not safety.
6. Does not supports concept of shutting \& vernal
7 - of does n ot have any feature to hot webs par
© ind Computer Virus
It is a kind of malicious software, that when executed, replicates by inserting copies of itself into other computer programs, datafiles, of the boot sector of the hard drive

When this replication succeeds the affected
user areas are then said to be infected:

A computer virus may corrupt or delete Data on a compiler.

Computer viruses are most eascty spread bo attachments in e-mail messages or by rartsing instants messaging messages or by using download on the hemet

Some common types of voruse are
Boot Viruses
It infect the master boot record in the ard
di disk.
They replace the boot record program or oveccohetming overwriting it. Therefore the boobs virus load into memory when the computer bots , erg From *store virus

* Disk keller * Méchact Angelo.

The Most dangerous Often known as systenvity
Program Virus
It infects executable files having extension Like exc, com, bah, dry, out, sys en :

These viruses are loaded in memory daring execution of the files, along with them.

The virus program remain active on the remory and multiply itself making the memory full. Examples Sunday

* Cascade

Macro. Virus
a series of commands that helps infects the macros within a document or template

When we open a word processing on spread sheet document, the macro virus is activated and Sits infects the normal template:

This virus propagates from one computer to another through the infected document folds.
eng + MV

* Word concept
* Nuclear

The Multipartite Varus.

- A hybrid of boot and program virus. They first infect the program foes and
front when the infected program is executed, the se vines infect the boot record t (1). Whens, the system us -booted next tome the virus from, the boot record loads, else of to the the virus from the boot program e
Memory and infects other Invader
mise
Hood Ex Invader of

$$
\begin{aligned}
& \text { Flip } \\
& \text { Tequila }
\end{aligned}
$$

The Polymorphic Vines
It is capable of encrypting its, code in different manner so that each appears different in each infection.
different manner
in each infection,
These virus are difficult to detect. 11
Cascade
Evil
Proud Virus 102
The Stealth virus
It uses certain technique to avoid detection. They usually direct the disk head to read a wrong sector instead of the one in which they reside, or Hey change the reading of infected fold's wore
(8) Hey change the directory $\forall i=1 \mathrm{~m}$.

Examples

* Josh
* Whale
* Frodo

Detection and Prevention of Virus
Virus Life cycle
Each virus goes through a life cycle A) comprising of the following phases. comprising
$\quad \rightarrow$ venus creation
\rightarrow Virus infection and replication
\rightarrow Virus activation
\rightarrow Virus detection
Tithes: $=$
\rightarrow Virus eradication
-vo, A computer virus has to be created by a programmer who unites a program which tater

- spread as the computer virus.

After this the virus infects celtach computes by many mean's atdereplicates, ff self in the hard
desk/ memory of the computer. This process of infection and replication is a contanuolat process through which the computer vitus expos itself from one computer to other
Win no 9 Once< $9 a$ coproputer virus infects la computer, ifninetss antisted, automatically Depending on the
in indartiof yer us, it activates itself on of durance of a particular event is such as certain date, ser executtes a part
email et t
-t email effort by some antercus bi, virus is detected by some of diagnostic pograms. program or other types eradicated through

Then the versus is eftware appropicate antivirus softa

Symptoms of virus
\rightarrow computer is giving problem during booting or takes a lot of time for booting
\rightarrow restarting automatically:
\rightarrow hanging when the user tries to execute a particular program
\rightarrow Dosplayong some unusual figures/sogns

- Performing some operations automatically. Hough the user has not goren any command for that operation.
\rightarrow Giving some "Message such os "insufficient
\rightarrow Hard disk is accessed usually many tomes.
\rightarrow A computer can be affected/infected by x) computer virus in e ether of the following ways * By inserting aston infected CD or Pin dive Cuigran to the system 9 m.
twin Through the LAN-sstup where one of the 7. computer belong co lg to the ria has been affected. * Through internet to nd email.

It. $\$$ Through installation of degal/pirated $\mathrm{s} / \mathrm{w}^{\mathrm{s}}$ specially games.
Prevention 1- , to the used without proper scanning;

* Always install and update a suitable antivenes s/w from an authorized sound sits
* Protect the system by setting zintovenus s/o 0 and the firewall to the auto protection mode * Don't visit websites with are not reputed * Always protect your computer from unauthorized use by setting a password * Don't? open unknown encils received in your mill.
\& Cheek the size of th orntante there of interval.

Macro Viruses
Macro is an executable program (e.g. instructions opening a file, starting an application) embed dod an word processing document (Fg MS Lord)

A macro virus es attached to a word. document
Document is load and opened on the waler host system.

When the mace executes, it copies iself to the global mace foll

The global macro can be activated ysprad, when new documents are opened.
Multipartite Varus
A multipartite virus is a computer virus That the cts and spreads in multiple unsays.

ing es
antrgen -

Application of computer in different domains
Business
A computer has high speed of calculation diligence, accuracy rel viability or vesatiliny winch has made it an integrated pars in all business organizations.

Computer is used in bushes organizations for payroll calculations budgeting, sales analysis. financial forecasting, managing employee database maintenance of stocks, etc-

Architects use computer animated graphics
Bueddongs: to vorpooses experiment with possible exteriors and to give dints a somabionome plan exteriors and proposed buildings.
hosing
Computer based edicatobn enhances the Education knowledge of the strident at a much faster pace surv y than the old tradictionalumethodati of fill Energy $($? 2 ens ur 1

Energy companies use computers to located al, coal, natural gas and uranium. These companies can figure out the site of a natural resource; its concentration and other \&related figures.

Law enforcement :-
Recent innovation in computerised law enforcement include national forigurprint files and computer modeling of DNA, which can be wed to match traces from a criminal's body such as blood at a come scene
Transport actions Computers are ind in cars to to monitor feed lexis, temperitines and electrical

Money
Computers have helped fuel the econless econemy enabling the widespread use of aredit cards, detest cards and instantaneous are by banks and retailess -

Health and Medicine.
computers are helping to monitor the extremely ill in the intensive body. the body putters to assist then in provide deininade Doctors use computieais of the sort
diagnosing certain disease

Secentific Research:-
Because of high speed characterises of
computer system, researchers can smelt
environments al phys

Paperwork
Computer systems will increasingly ant down $h_{\text {u }}$ paperwork. All the necessary data and information is transferred to the among of the computer This makes managing various tasks easier, faster, more effective than the manual system.
\qquad
\qquad

\qquad

Computer Network and Internet
A Netixiork:-
\rightarrow A computer network is a system of interconnected computers and peripheral devices to exchange data.
\rightarrow Each device on the network is known as node.
\rightarrow Each node has a unique address Network goals

- Resource sharing

By keeping a number of computer in a network, it becomes possible to share the various types of resources in terms of computer hardware, computer software and peripheral devices to be shared between the individual system. This breaks the geographical barrier of resource usage.

- Sharing the job load.

A huge task is divided into small modides and distributed to various computers present. in a network. This technique redrices the load on individual computer, but finishes the whole task in time. This technique is often referred to as parallel processing of 100 D - Achieving reliability

By raking a' system available at any instant of time, we achiever reiciabclity. In a networked system, if a system fails, then we can use another system present in a network attend an ongoing job. This
reliability of the system.

Protocol
A protocol is a set of rules that governs the communication between computers on a network.

These rules include guidelines that regulate the following characterstics of a network:

- access method
- allowed physical topologies:
- types of cabling
- Speed of data transfer

Types of Network Protocols:
Ethernet:-
It uses an access method called CSMA/CD (carrier Sense Multiple Access/Colliscon Detection)

Here each computer listens to the cable before sending anything th through the network. If the n / w is clear, the computer will send. If some other node is already transmitting on the cable, the computer will wait and try again when the line is clear.

Sometimes, two computers attempt to transmit at the same time, collision may occur. Each computer then baches off and waits a random amount of time:

- Allowed physical topologies - linear bus, star, orle Types of cabling - twisted pair, coaxial or fibre optic cable. Speed of data transfer- 10-1000 Mbps

Local talk.
Developed by Apple computes
Method - CSMA/CA (Carrcer Sense Multiple Access with Collision Avoidance)
Allowed physical to pologies - Linear bus, dar ortre
Types of cabling. Twisted pair cable speed of transmission -230 kbps

Token ring
Developed by IBM
Access method -Token passing.
In Token ring, the computers are connected so that the signal travels around the network from one computer to another in a logical ring A single electronic token moves around the ring from one computer to the next. If a computer does not have information to transmit, it simply passes the token to the next workstation. If a computer wishes to transmit and receives an empty token, it attaches data to token. At this point, the data is captured by the receiving computer.

Types of cabling - Twisted pair/fibre opticiable Speed of transmission- 4-16 Mops Allowed physical topology. star wired ring FDDI
(Fiber Distributed Data Interface)
It is used primarily to interconnect 2 or more LAINS often over large distances.

Access method. Token passing.
Allowed physical topology -dual ring
speed of transmission - 100 Mbjos
ATM (Asynchronous Transfer Mode)
It transmits data in small packets of foxed sir Allowed physical topology - st at
Types of. cabling- fibre oplec, twisted pair cable
speed of data transfer - 155-2488 Maps

Data transmission mode
The way in which data is transmitted from one place to another is called data transmission mode. It is also called data communication mode.

It indicates the direction of flow of information. Also called directional modes.
Types of data transmission mod.

1. Simplex
2. Half duplex mode
3. Full duplex mode

Simplex Mode
\rightarrow Data can flow in only one direction
\rightarrow In this mode, a sender can only send data and cannot receive it. Similarly, a receiver can only receive alate but cannot send it:
$e g \rightarrow$ Data sent from computer to printer Radio and T.V transmissions

Sender \rightarrow Receiver.

Half-Duplex Mode.
Data can flow in both directions but only in one direction at a time \therefore In this mode, data is sent and received alternatively.
e.g:- A one lane bridge

Internet browsing:-
User sends request to web server. for a web page Webserver receives request and sends data of the requested page

$$
\begin{aligned}
& \text { the requested page } \\
& \text { Sender/Receiver } \rightarrow \text { Receiver/Sender }
\end{aligned}
$$

Full-Duplex Mode
Data can flow in both direction at the same time Fastest directional mode of data communication $e-g \rightarrow$ Telephone communication system Automobile traffic on a two lane riced

What is a topology?
The topology of a network is the geometric representation of the relationship of all the links and linking devices (usually called nodes) to one another.

There are 5 basic topologies
1 'Bus
2. Star
3. Ring
4. Tree

5 Mesh
Bus
Bus networks use a common backbone to connect all devices.

A single cable, the backbone functions as a shared communication medium that devices attach or tap into with an interface connector.

Bus.
Advantage:-
Easy installation
Disadvantage:-
Difficult reconnection and fault isolation. A fault in the bus cable stops all transmihrom.

Star
In a star lopology, each device has a dedicated point to point link only to a central controller, called a hub. The devias are not directly connected to one another.

If one device wants to communicate to another, it sends the data to the controller, which then relays the data to the other connected device.

star
Advantage

- Easy to install and reconfigure
- Less cabling
- If one link fails, only that link is affected All other links remain active, iso easy to fart identification and fault isolation.
Disadvantage
- If the hub/ central controller fails, nodes attached are disabled

Ring
In a ring topology, each device has a dedicated point to point connection only with the two devices on either side of it.

All messages through a ring in the same direction (ce either dockwise or anticlockwise)

Advantage
Easy to install and reconfigure
Disadvantage
Unidirectional traffic. In a simple ring, a break in the ring can disable the enter network.

Tree/ Expanded Star.
Tree topologies integrate multiple star topologies together onto a bus.

In its simplest form, only nub devices connect directly to the tree bus and each hub functions as the "root" of a tree of devices.

Disadvantage

- More difficult to configure ard wired. - If the backbone line breaks, the enter segment goes down
Mesh Topology
In a mesh topology, every device has a dedicated point to point link to every other device

A fully connected mesh network therefore has $n(n-1) / 2$ physical channels to link n devices.

finally point to point links make fault identification and fault isolation easy.

Advantage.
A mesh topology is robust. If one link becomes unusable, it does not incapacitate the entire

Disadvantage

- Installation \& reconnection are difficult.
- Very expensive.

Types of networks
Mostly networks are classified on the basis of geographical spread There can be 3 types of networks

- Local Area Network
- Metropolitan Area network
- Wide Area Network.

Local Area Network (LAN)
Small computer networks that are confined to a localised area (egg. an office, a building or a. factory) are known as Local area network

The key purpose of a LAN is to serve its users in resource sharing. The hardware as well as software resources are shared through LANA.

It is limited in sore, typically spanning a few hundred meters and no more than a mule. . It is fast, with speeds from $10 \mathrm{Mbps}-10 \mathrm{Gbps}$. Metropolitan Area Network (MAN)?

Metropolitan Area Networks: are the networks spread over a city
l. gi- cable TV'networls.

A MAN typically. covers an area of between 5 and 50 km . diameters

Ex :- Telephone company

Nide Area Network

- The networks spread across countries are known as WINs.

A wide area network is a group of computers that are separated by large distances and tied together

The WAN link computers to facilitate fast and efficient exchange of information at
$\because A N$
limited to a small Geographical location

Rate of datri tranmision is higher
A. LAN is established by world media.

WAN
A WAN is spread over a very large goograptee location

Rate of data transmission is lower

A WAN is always established by woreles media. Cost of communveation ch higher

Networking devices
Hub
A nub is a hardware device used to connect several computers together.

A concentrator is, a device that provides a central connection point for cables from workstations; servers and peripherals.

Hubs can be either passive or active.
Active hubs electrically amplify the signal as it moves from one connected device to another. Passive hues allow the signal to prow from one computer to another without any change

Pipater signal being transmitted on the network. st is used an long network lines, which exceed the maximum. rated distance for a single run.

Over distance, the cables connecting a network lose the signal transmitted. If the signal degrades too much, it fails to reach the destination Or if it does arrive, the degradation of the message makes it

Repeaters can be installed along the way to ensure that data packets reach their destination.

Switches
A switch is a device that is used to segment networks into different subnetworly called subsets or LAN segments.

Segmenting the network into smaller subsets prevents traffic overloading. in a network.

A switch is responsible for filtering -itransforming data in a specific way and for forwarding packets between LAN segments. Bridge

A bridge is a device that lets you link two n / ω^{s} together.

Bridges are smart enough to know which computers are on which side of the bridge, 10 they only allow those messages that need to get to the other side to cross the bridge. This improves performance on both sides of the bridge.

As a packet arrives at the bridge, the bridge examines the physical destination address of the packet. The bridge then decides whether or not to let the packet cross
Router.
A device that works like a bridge, but can handle different protocols, is known as a router.
(For example, a router can link. Ethernet to a mainframe.)

If the destination is unknown to a router, of sends the traffic to conothe router which knows the destination.

A bridge uses physical address whereas the router uses logical addrenes.
Gateways
A gateway is a device that connects dissimilar networks.

It expands the functionality of routers by performing. data translation and protocol. conversion.

A gateway is actually a node ion a network. that ferives as an entrance to another network.

NIC.s (Network Interface Card)
It is a hardware card installed in a computer so it can communicate on a network. The n / w adapter provides one or more ports for the r / w cable to connect to, and ot transits and receives data onto the r / w cable.

Interne Services
Electronic mail
\rightarrow Often abbreviated as e-mail.
\rightarrow t mail is an electronic way of sending and receiving digital messages.
\rightarrow Modern e-mail can consists of text, picture, audio, video and some other files.
\rightarrow The e-mail is cheaper and faster.
\rightarrow Ray Timilson is considered as the inventor of e-mail.

Advantage of e-mail
\rightarrow The e-mail is very fast.
\rightarrow E-mail does not depend on geographic location of the recipient.
\rightarrow Files can be sent as attachment.
\rightarrow Easy to use
\rightarrow Saves a lot of time.
File Transfer Protocol
\Rightarrow Used to transfer files from one computer to another.

File upload is the process of transfering the file from your computer to the other network computer tersorgor or server

File download is the process of transfering file from any network computes/ server to your computes.

Download F Receiving of
a file from
a file from the y / m

World wide web
The world wide web is a set of protocols that allows you to access any document on the net through a naming system based on URLS.

Sir Tim Berners Lee invented the world. wide web.

Chatting
Chatting is the most fantastic thing on the internet. It is like a text phon. In chatting. you type a message on your screen, which is immediately received by the recipient, then the recipient can type a message in response to your message, which is received by you instantly.
Internet Relay Chat (IRC)
IRC is a multiwser, multich annel chatting system. It works on cloent/servertechnology.
Internet (Web) conferencing
Web conferencing is a form of real time communication in which multiple computer users, all connected to the Internet, see the same screen at all times in their web browsers.

Web conferencing allows users to cary on business meetings and seminars, make presentations conduct demonstrations, provide on tine education and offer direct customer support.
Electronic: newspaper
gt is the online version. of a newspaper Going online created more opportunities for newspaper such as competing with broadcast for newspaper such as competing win a more
journalism in presenting breaking news in
timely manner.

Online shopping
Online shopping involves purchasing products or services over the interned

All the products in descri
files.

Different types of Internet Connectivity and ISP

1. Dial up connections
\rightarrow The most basic type of internet connection is called a dial up connection.
\Rightarrow This connection is made through a.modem that uses a telephone line to connect to the Internet:

The modem must dial the telephone every time it wants to connect to the internethence the name diatup.
Modem - Dial -Up connection
The fastest modem that you can use for this type of Internet connection is called a 56 K modem.

When a regular analog telephone line is use for an Internet connection the modem must convert the analogsignal that it' receives from the thephome line into l digital signals that the computer can comprehend. To send information from your compute, the modem must take the computer's digital seyilal and convert them into analog signal to be sent over the telephone line. All of these conversions take time; so this is a relatively slow connection.

ISDN Deal up connection
ISDN (Integrated Services Digital Net.onh) This connection is a high speed deal up and requires digital telephone line.

Improves speed because signals are ch digital form. But it c's costly.
Advantage
Very economic
inedely available.
$n / w \cos t s$ are minimal.
Disadvantage
very slow
When connected to the internet, the same phoneline cannot be used for phone calls, so if anyone phones you when you are connected, they will get a bury signal.

Analog to digital \& digital to analog conversion adds a performance overhead which affects the speed of the connection.

ADSL connections
Asymmetric Digital Subscribers Live
\rightarrow Widely available
\rightarrow can provide an excellent internet connection.
\rightarrow The connection work by splitting your phone line into 2 separate channels, one for data (cabernet) and one for vole (phonucalls)

Ere:- $256 \mathrm{kbps} / 128 \mathrm{kbps}$ downloading (uploading
speed
spas
speed

ADSL connection advantages
\rightarrow ADSL technology eliminates the need for a second phone line by allowing voice and data transfer at the same time
$\Rightarrow A D S L$ does not. need to convert the data from digital to analogue and back again.
\rightarrow ADSL connections are Always on, which Makes the usual long wait to connect a thing of the past.
ADSL connection disadvantages
\rightarrow ADSL connections are not available to everyone. \rightarrow The hardware costs can be quite significant. \rightarrow ADSL connections are Always on, so you will need a firewall to protect your PC..
Cable connections
Offer very fast and reliable connections with a fixed monthly fee:

Cable companies usually offer different packages to suit different internet subscriber's, The different packages will offer deferent speed specifications and bandwodkth limits

Because a cable connection uses a totally separate medium to transfer data it does not affect your abdity to male receive phone calls Advantages

Speed is very high.
transfer data digitally, eliminating any digital/ analogue conversion overhead.

Cable connections are always on, eliminating long waits to rake a connedion.
Disadvantages.
Cable connections are not available in every area. Because cable connections are always on?
you will need a firewall to protect your PC
ISP:-
(Internet Service Provider)
An ISP is a company that provides individual y and other companies access to the Internet and other related services such as website building

There are 2 types of ISPD:
Local and national level isp.
A local ISP provides internet service in a : A local ISP proved whereas a national ISP particular city or area should the court.
$e . g \rightarrow$ Satyam Infoway
MTNL Mahanagar Telephone N Lergam Limited VSNL. Videsh Sanchar Jigam Limited

File Managment And data
Processing

WHAT IS A FILE?

- File is an electronic document.
- It contain of the file can be ordinary text and executable
- Each file is given by a file name to identify it.
- The file name is in the form file name Extension
- File name consist \& alphabets special character etc Example : $A B C \cdot d o c$
- Here $A B C$ is a file name. doc is a extension name is indicate the document file.
WHAT IS A FOLDER?
A folder is the collection of multiple file it is otherwise known as directories
A folder can also store other folder called sub folder. folder helps organising file.
Example: A person can store all photos in a folder name while he can store vedio in another similarly named folder, then he can place all such folder in a folder called my document.

DIFFERENCE BETWEEN FILE ANVU rower

FILE
(1) File store data
(2) file size ranging from a few bit to 2 killo bit as in world file 2 gig file.
(3) Storage capacity of data is len compare to file
(4) File have some extension name
(1) folders store file
(2) folder usually takes no space in the hard drive
(3) Storage capacity data is more as compare to file
(4) Folder does'nt have extension name.
(5) like - DOc, tent, etc

File Access Method
There are three types of file accen method

- Random (Direct) Accen file
- Sequential Access file
- Index access file

Random Access FIle

- In Random Access or direct Access method of file organisation each record has its own addren on the file
- with the help physical addren the record can be directly access for reading and whiting.
- There are created only on magnetic disk since every record is independently accen and every transaction can be manipulated individually.
- Reseed suited for online procening system.

ADVANTAGES

- Immidiate Access to record is possible
- Uptodate information will be available avaliable on the file
- Addition and deletion is not very complex.

Disadvantages

- Less efficient in use of storage space.
- Data sec security is len due to direct Access facility SEQUENTIAL ACCESS FILE

- It is a file in which records are store in some order
- There are prefor preferable when they are store in sequential access devices such as magnetic tapes.

ADVANTAGES

- File design is simple
- Location or Record required only the record key.
- Magnetic tapes are used for storing data.

DISADVANTAGES

- Addition and deletion of data is not simple
- updating requires all transaction records are shorted in record key sequence.

INDEX SEquENTIAL FILE

- It combine the advantages of sequential and direct Access, file organization.
- It is basically organize serially on key fields.
- An ed addition or and index is maintain with splits of Access of isolated records.

- It is also known as Index sequential method (is Am)
- Here within each block the record is searched sequentially
ADVANTAGES
- Suitable for both seavencial and online or direct access proconing.
DISADVANTAGES
- Less efficient in use of storage space
- Addition and deletion of records are more complex.

DATA CAPTURE

- It is the process of identification and extraction of data from a scan document.
- methods of data capture from documents in Electronic format are as follows:-
(a) SINGLE CLICK
at is an OCR (optical charader Recognition) tool uredt capture machine produced characters in low volume adhoc. Capture application and populating aline of businon application
OCR (OPTICAL CHARACTER RECOGNITION)
It has the ability to succenfully capture machine produce character in full page. It is used to capture low to high volume of data where the information is inconsistant location on the document.
ICR (Intelligent character Recognition)
$9 E$ is a computer translation of hand printed and written character.
Data is Entered from hand printed forms through a scanner \& the image of capture data is a len and translated by sofistigcated ICR software.
BARCODE RECOGNITION
$9 t$ is independent upon the type of bar code that is used amount of data can included is high as
$I D R$
(9 NTEUIGENT
Document Recognition)
Herl the level of capability is depending upon the in divisual product.
There application are used to capture metadata from documents i.e. Rules bared.
- Example: - Product will identify post codes, logo's, key board, vat resistration Number, on going running, capture information frommultiple document file.

DATA STORAGE
Data storage is the holding of data in an electro magnetic form for access by a computer processor.

- Data storage is two types
\rightarrow Primary storage
\rightarrow secondary storage
Primary storage
- Data is hold in RAM (Random Accen memory) and other memory devices that are built into computer.
secondary d storage
- It is the data that is stored on External storage devices such as Hard disk, CD'S, tapes, following are stem of the devices for data storage.

SUB: COMPUTER APPLICATION CHAPTER-O5
Ch. 5: Problem Solving Methodology
\therefore tine programoner has be go through various sbieps while writing a pragr(nos, aces mentioned below:
\Rightarrow The programmer gets the problem and understands it.
\Rightarrow Then he frames a logic for solving the problem and represents it in the from of a plowchorb or algorithon.
\Rightarrow Then he chooses a particular programming language to encode the algorition and convert it to a computer program.
\Rightarrow Then he loads the program in the computer, compiles ith-by using the language compiler and executes. the program.
\Rightarrow Alder the program is executed we get the result of the problem.

* Algorcithon:
\Rightarrow In algorition can be defined as a step by step method for writing the various steps of the solution to a problem.
\Rightarrow Before writing any program it is always 1 advisable to have the algorithon for the problem.
1 Algorithon ctanacterstics:
\Rightarrow Algorithon should be definite
\Rightarrow figorithon should have de finite number of steps.
\Rightarrow Algorithm should mention the input required for the program cleanly Algorithm should give an idea the output that will obtained.
\Rightarrow Example:
To print all the 2 -digit odd numbers.
Step 1: Initialize a variable NUM with 11.
step 2: priest this variable NUM.
step 3: Add 2 to the variable NUM. 1
step $4: G 0$ on repeating step 2 and slip 3 until NUM becomes; mare than 99.
Algorithon Types:
\Rightarrow In an algorithon we define the loge. of a problem solution, normally there are three types of logic i.e.,
* sequence logic
) selection logic
- Iteration logic.
\Rightarrow The sequence $\log \mathrm{gic}$ is the simplest one where the problem solution is achieved by executing the steps in a linear sequence one after another from sop to boffin.
\Rightarrow In the selection logic, the flow of the priablom, logic is not linear, rater it differentpaks basic on the result of certain condiriars.
\Rightarrow Similarly in iteration logic, a number of steps are repeated certain number of tines depending on the iteration counter. This is also known as looping logic.
Pseudocode:
When we write the logier of a problem solution in a step manner in English and follow certain programming conslrucuion, then it is known es Psieudocode.
\Rightarrow Psendocode is a set of codes which may not be written by following the correct syostan of the code.
\Rightarrow like algorithon, a pseudocode can be written in a 3 basic ways ire.
7 Sequence $\log _{i}{ }^{\circ} \mathrm{c}$
γ selection logic and
- Iteration logic
\Rightarrow A pseudocode is also known os program design language (P DL) as it emphasises

(sequence $\log i c$)

Ex: To print all 2 digit odd numbers.

1. Begin
2. set $N U M=11$
3. print NUM
4. Set $N U M=$ SUM 2
5. If $N U M \angle=99$ then repeat step 3 \& 4. 6. End.

Flocuchart :
\Rightarrow A Llowchart is another prograon planning foul where we represent the logic of a problem in a pictorial manner by using a set of predefined symbols.
\Rightarrow These symbols are joined by solid lines with artrocie and contain the varioces takes tasks so be performed at different steps.
\Rightarrow While drawing a flowchart, we uses different types of syonbols to contain different Hypes of statements of the problem solving logic. They areshown below:
\Rightarrow contain START OR STOP
\Rightarrow Contains input statement
\Rightarrow contains any calculation on processing statement
\Rightarrow Contains condition for selection logic.
\Rightarrow contain number of iterations in the for of a starting and ending condition
(C) \Rightarrow Continuation symbol
\Rightarrow shows the direction of the flow of logic and comet different cyomiss of me tiwithat

Advantages:
\Rightarrow program logic represented in a graptiven manner is easy to create.
\Rightarrow The $\log ^{i c}$ in a flowchart is easy $b 0$ interprets.
\Rightarrow It can be used as a program planning document even by non computer professionals.
\Rightarrow If is easy to modify the logic of a problem solution if it is in the foron of a flew chart.
\Rightarrow long and complicated problem solution can be represented by small and simple firwchants.
Disadvantages:
\Rightarrow The problem solution represented in a flowchart in difficult to convert into a program.
\Rightarrow sometiones it become difficult to represent problem solution in flowchart if it contains certain specific type of structure.

* Generation of Programoning language:

Finst Generation of Programoning language:
\Rightarrow The first generation of programoniog language is machine language.
\Rightarrow Machine language is set of instructions and data that a computer's construal

- processing unit cans execute directly.
\Rightarrow Machine language statements cone written in binary cole.

Second Eneneration of Programoning Language:
\Rightarrow The sewed generation of programenerg language is assembly language.
\Rightarrow Assembly, language is the humanreadable notation for the onachine language cised to control specific computer operations.
\Rightarrow An assembly language programmer aretes instructions using syonbolsc instruction codes that are meaningful abbreviations or mnemonics.
\Rightarrow An assembler is a progrccem that branslats - assembly language into machine-language.

- Third generation of programming Languages:
\Rightarrow The third generation of programoniong language or procedural langelage uses a series of English-like words, that are closer to human langelage, to write instructions:
\Rightarrow High-level programoning languages make complex progrecimoning simpler and easier to read, write and maintain.
\Rightarrow Programs written in a wigh,level programming language by a compiler or intexpiefer.
\Rightarrow Ex: $c, c+f$.
Fowerth Generation of Progreamoning language: \Rightarrow The focerith generation of programming language or non procedural language. enables users to access data in a database.
\Rightarrow A very high-level programming language is often referred to as goal oriented programming language because it is usually limited to a very specific application and it night use syontax that is never used in other programming languages.
\Rightarrow ex: $S Q L$
Fifth Generation of programming Language:
\Rightarrow The fifth generation programming language or visual programming languages, is also known as natural language.
\Rightarrow Provides a visual or graphical interface, called a visual programining environment for creating source codes.
\Rightarrow It allows people to interact with computers without needing any specialised knowledge.
\Rightarrow People can talk to computers and the voice regonition systems can convert spoken sounds info written words.
\Rightarrow Ex s Prolog.
1 Structured Progrecomoniog Language:
\Rightarrow Structured programoning is a subset of procedural programming that enforces a logical structure on the program being written to make it more efficient and epesier to understand and modify.
\Rightarrow Certain languages such as Ada, Pascal, and IBASE are designed with features that encerunage or enforce a logical program slructine.
\Rightarrow structured progreomming frequently employs a top-down design model, in which developene mop oct the overall program structure into separate module or subondute. scebsections.
\Rightarrow Progruaon. flow follows a simple hierarchical model. that employs looping constructs such as for ', while.
\Rightarrow structiened progrecimoning was fins suggested by correado Bohon and Guiseppe Jacopiöi. The two mathematicians demon. stncited that any computer program can be writhen with just three structures: decisions, sequences, and loops.
\Rightarrow Most modern procedkenal languages include features that encourage structured programming.
\Rightarrow Object -oriented programming (op) can. be thought of as a type of structured pregramoning, uses strictured programming techniques for program thew, and adds more siruetune for data to the model.
- Examples of problem solving through

Flow chant:
Sx-1: Draw a Flowchart to find the largest among three numbers x, y, z.

Ex-2 : Draw a plewchert to add of 2 . integers.
start

In -3: Addition of all digits of a given numb.
start

Stryctated Programming Language
It is sometimes known as modular programming;
\rightarrow It is a subset of procedural programming that enforces a logical structure on the program, written to make it more efficient, easier to understand and modify
\rightarrow ADA, Pascal, database are designed to encourage or enforce a logical program structure
\rightarrow It employs a top down design model in which developers map out the overall program structure into separate subsections.
\rightarrow structured programming was first suggested by Corrado Bohm and Guiseppe Jacopini
\rightarrow The two mathematicians demonstrated that any computer program can be written using three structures such as decision, sequence and loops.
\rightarrow The nuost common methodology employed was developed by Dijkstra In this model the developer separates programs into subsections that each have only one point of access and one point of exist.
\rightarrow OOPSEOD can be thought of as a type of structured programming, uses structured programming language for prog rain flow and detsmare
Structure for data Structure for data to the model.

Q Writer an Algorithm to check
whether number is even or odd.
step 1.: Read the value of x
step 2: If $(x \% 2=0)$ then
step 3: Print number is even
step 4 : else
step 5: Print number is odd.
2. Write an algorithm of swapping ts numbers.
Step 1: Start
Step 2: Read a and b value
Step 3: Interchange the values

$$
\begin{aligned}
& \text { temp }=a \\
& a=b \\
& b=\text { temp }
\end{aligned}
$$

Step 4: Write a and b value
step 5: stop.
3. Write an algorithm to find the largest among three numbers x, y, z.
Step 1: Read three numbers x, y, z
step 2: Compare $x \& y$
Step 3: If x is larger, compare it with z
step 4: If x is larger than z then x is the
largest otherwise z is the largest
slop 5: If x is smaller than or equal to y in the first step then y is compared.
Step 6: if th is larger than z thegn y is the largest number otherivese z is largest.
Step 7: stop
algorythin to " find out the area of triangle where three sides are arb, c.
Step 1: Read the value of a, b, c
step 2: $S=\frac{a+b+c}{2}$
Step 3: area $=\sqrt{s(s-a)(s-b)(s-c)}$.
step 4: Display the area of the triangle
shop 5: stop
Write an algorithm to find the roots of Quadratic equation: $a x+b x+c=0$ step 1: Read the value of a, b, c
step 2: $d=b * b-4 * a * c$
step 3: If $d<0$, then display the roots are imaginary else if $d=0$ then display roots are equal
r r $=-b / 2 * a$, display r

* else $r_{1}=-b+\frac{\sqrt{d}}{2} \times a$

$$
r_{2}=-b-\frac{\sqrt{d}}{} \times a
$$

Display, roots are real and $r_{1} \& r_{2}$ Step 4: stop
6. Write an algorithm to find factorial of an Integer
step 1: Read a value of x
Step 2: Set variable fact as 1
step 3: Fact $<=$ Fact $* n$. decrease n
-u ." ven of "s eqpur wo. If n is equal to zero go to else go to step 3
Stop 5: Print the result fact.
7. Write an algretohm to convert temperature to Fahrenhirt.
Step 1: Stent
Step 2: Read the lemperature in Centigrade
step 3: store the value in C
step 4: Set F to $32+\frac{9}{5} * C$
Step 5: Print value $C \& F$
step 6 : Stop.

Sequence Logic.

* Create a flowchart to calculate the area of a triangle whose sides are a, b, c.
soln. Area of a treangle.
$\sqrt{s(s-a)(s-b)(s-c)}$
$\frac{\text { start }}{\downarrow}$
Read a, b, c
$S \leftarrow \frac{a+b+c}{2}$

$$
\begin{gathered}
\text { area } \leftarrow \sqrt{s(s-a)(s-b) s-c} \\
\downarrow
\end{gathered}
$$

Print area
loge

* Draw a flowchart of five random numbers.
san n Let numbers be $1,2,3,4,5$.

$$
\begin{gathered}
\text { Sum }=1+2+3+4+5=15 \\
\text { (start) }
\end{gathered}
$$

$$
\frac{\text { start }}{1}
$$

$$
\operatorname{sum}=0
$$

$$
i=1
$$

Is a flow chant which prents the names Atizen eligible for voting in a city of 10,000 pulation, and the eligibility of the person should be more than 18 years of age

If squw a flowchart to find the sum of square of first n integers

Is a flow chart to carver remperamue of to ${ }^{\circ} \mathrm{C}$
start
Read f

$$
\begin{gathered}
\downarrow \\
C=\frac{5}{9} *(f-32) \\
\downarrow
\end{gathered}
$$

Print C
stop
Draw a flowchart to calculate and print the product of the following series

$$
\frac{1}{2}, \frac{3}{4}, \frac{5}{6} \cdots \frac{21}{22}
$$

Draw an flow chart to find sumer 10 random numbers

even deg a flowchart to calculate the sum (11) digit's of a given number.

Ouermew of C Programming
CHAPIER-G LANGUAGES

Introduction to $C:-$
'C' is One of the mast widely used procedural language which has bean closely associated with the UNIX operating system for which it was developed. It was Originally developed by Dennis Richie at
Bell laboratory.
It is easy to use and implement
It is ads fully based in coding.
It is written in high level language and also use prociolural language.
Type of C:-
(1) Common C

Until recently there was One dominarst fere of the C language. Thus was the mativs unix form, which for. historical reasons is known as either Bell labs C, after the most popular Compiler, or K. \& R.C., after the authors of the most papular textbook. On the language. It is now often called "classic C "
(2) ANST-C

The American National standards. Institute definecta Standard for, eliminating much uncertainty about the enact Syntax of the language. This newcomer, called ANSI C, proclaims itself the standard version of the language. As such it url Inevitably overtake, and eventually replace common C.
ANSTC does incorporate a few improvements over the old common. The main difference is in the grammer of the language
(3) $\xlongequal[0]{ } 9$

In 1990 , the ANSI C standard was adp adopted by the International Organization fer standarctizaticos Os TSO/TEC 989a. 1990. This version is Sometimes Caved C90. Therefore, the terms "C89" and "C90" refers to essentially the sane language.
(4) $\subset 99$

In March 2000, ANSP adopted the ISO/IEC 1899: 1999 standard. This standard is Commonly referred to as caa, and it is the current standard for C programming language.
C program Structure:-
A C program basically has the following form:
(a) preprocessor Command.
(b) Type definitions
(c) Function prototypes
(d) Variables
(e) Functions

Pre-processor
It directives are instructions for the compiler. pre-processor directives are prefixed by the '\#' character. In C, two different pre-processor Commands are needed.
(1) \# incluele < file name h 〉 : The include directive is used to link c source files, object fees, and libory files together. For this diceusion we well wee this to link the library files. This directive must appear before global variable
declarations and function decluretions
(2) \# define NAME VALDE: The define directive is used to

Sat definitions: \qquad
Example: \# define PT 3.14.
Character let
The character let is C language caningrouped into the following categories.

1. Secures (Alphabets from A to Z and a to Z.)
2. Digits (Numbers, from 0 to 9)
3. White spaces.

White spaces are ignored by the compertere until they are a part of string constant. White. space may be cued to separate words-, but are strictly prohibited while using between characters of key bo keywords or identifier.

Character -Set Table

Letters	Digits
upper case A to z	0 to 9

Special characters.

Whits Space

1) Blank space
2) Horizontal Tab
3) Carriage Return)
4) Newline
5) Form Feed.

C tokens
The tokens of a language are basic building blocks which can be put together to construct programs.
Constants, Vabrabies And Dais Types TNC
Constants
A constant can be defined as "a quantity that does not change alwing the execution of a program".
C supports cerveral types of Constants.

1) Integer constants
2) Real constants
3) Single character constants
4) String constants

Integer constants.
An integer constants must have at least-ane digit and should not have decimal point. It could either be positive or negative. There are 3 types of integerier namely decimal integer, Octal integers and hexadecimal integer.
Peal Constants.
A real constant must have at least onedigit and must o have a decimal point. Real constants Consists of a fractional part in their representation

Real numbers can also be represented by exponential natation $=$

SINGIE CHARACTER ConNGANUS A single character Constarite represent a single character which is enclosech is a pair of quotation symbols.
STRING CONSTANTS
A string constants is a set: of characters enclosed in double quotation marks.

BACKSLASH CHARACTER CONSTANTS
Backslash character constants are especial characters used io output functions.

Variables $^{\text {and }}$
A variables is names give to the space in the memory for holding data such as integers, charackes. floating paint numbers, strings rete. A variable is a value that cave change any time.

Declaration of $\sqrt{\text { variables }}$

Constant Datatype Variable name	$=$ Value	
\downarrow	\downarrow	\downarrow
constant Float	Pi	

DATA TYPES INC
When programming, we store the variable in our Computer s memory, but the Computer has to know what kind of dato we want to store in them, Since it is not going to occupy the same amount of memory to store a simple number than to store a single letter or a large number, and they are not going to be interpreted the same coy. bytes. A byte is the minium amount of memory. A byte can store a relatively small amount of data: One single character or a Small integer. In addition, the computer Can manipulate more complex data types that come from grouping several bytes, such as long numbers or cion -integer numbers.
"primary data type:-

Secondary data type Lusex defined date type

Syplax	dectatype	Bindentikeer
type def.	end.	Salary
(1) type def.	Float.	average
(2) type def.	char.	add
(3) type def.		

PRIMARY DATA TYPE:-

Secondary data type L user defined date type.
Syntax

type def.	datatype	sindentikier
in type def.	int.	Salary
(2) type def.	Float.	average
(3) type def	char.	add.

Managing Input - Output Operations
In any programming lomgrige, the. interface forms a very impoxinent pins it deals with laving dote from the wee ararat displaying biecte output. Fox, this purpose we require the input Output operations.

Reading processing and wirciling of data ace the thee e essential functions of a Comp sere program. Most programs taker some data as input and display the proposed date, often known as information or result, on a suitable medium.

Each program that uses a standard Enput/output function mut contain the statement

$$
\text { Include. }\langle S+d i o \cdot h\rangle
$$

at beginning.
Single Character input Output:
The simplest of all input/output operations is reading a charaterter from the Standprof input, unit and whiting it to the standard output chit. Reading a Single character can Re e done by using the function getchor. The getchex take the following
form

$$
\text { Variable name }=\text { getchar }() \text {; }
$$

Variable name is a Valid C., name that has been declared as char type.

OPERAToRs Lexpraissions, TYPE conversion An
Typectsing
 Command the computes in do a certain mathematic or logical manipulations. Operators are used in C

- language program to operate on date and --Variables. C has a rich set of operators which - Can be classified as

1. Arithmetic Operators
2. Relational operators
3. logical operators
4. Assignment operators
5. Tocrements and Decrements operators
6. Conditional operators
7. Bitulise operators
8. Special operators.

Operands are Variable or expressions which are used io operators to evaluate the expression.

An expression is a combination of operands and operators. For instance $a=b+c$, denote am expression iq which there are B operands namely a, b, c and one operator namely $+\ldots$
The association of expressions and keyeoords is called. Statements. For instance int $a=b+c$; denote a statement.

1. Arithmetic operators

Arithmetic operators are used for anthmetic operation like addition, Substraction, Multiplication, Division etc.

Meaning
Addition.
Sutetraction
Multiplication
division
Modulus operators
2. Relational operators
often it is required to compare the relationship between operands and bring Out a decision and program accordingly. This is whom the relational operator come into picture. C. Supports the following relational operators.

Operator	Description	Example
$>$	greater than	$5>4$
$>=$	greater than or equal to	mark $>=$ sorore
$<$	less than	height <75
$<=$	less than or equal to	height $\langle=$ input
$==$	equal to	Score $==$ mark
$1=$	not equal to	$51=4$.

3. Logical operators

In the term logical refer to the ways these relationships can be connected together using the rules of formal logic .. C has the following lonicaloperatore, they compare or evaluate logic and relational expressions.

operator	meaning
44	logical AND
11	logical OR
1	logical NOT

Assignment Operators
The Assignment operators evaluates an expression on the right of the expression and substitutes it to the Value or variable on the left of the expression.

Statement with simple assignment Statement with short hand operator

$$
\begin{aligned}
& a=a+1 \\
& a=a-1 \\
& a=a * 1 \\
& a=a / 1 \\
& a=a \% 1 \\
& a=a \%(n+5+6) \\
& a=a *(n+1)(n+2)
\end{aligned}
$$

operator.

$$
\begin{aligned}
& a t=1 \\
& a-=1 \\
& a_{*}=1 \\
& a /=1 \\
& a \%=1 \\
& a \%=n+5+\frac{6}{2} \\
& a *=(n+1)(n+2)
\end{aligned}
$$

5. Increment and Decrement operators:

The increment and decrement operators are one of the unary operators which are very usufal io C language.

a. Conditional or Ternary operation The conditional operator consists of 2 symbols the question mark (?) and the colon (i).

Syntax
Exp 1 ? $\exp 2: \exp 3$

$$
x=(a>b) ? a: b
$$

7. Bitwise operators
C has a distinction of supporting special operator known as bitwise operators for manipulation data at bit level.

Operator	meaning
$\&$	Bitwise. AND
1	Bitwise OR
\triangle	Biturse onclusive
$\langle<$	shift left
\gg	shit to right.

8. Special operators

C supports some special operators of interest such as comma operator, size of operator, pointer operator (L and *) and member Selection operators (\cdot and $>$) -

EXPRESSIONS
An expression is a combination of variable constants and operation woxitten according to the syntax of C language.

Algebraic Expression
$a \times b-c$
$(m+n)(x+y)$
($a b / c$)

$$
\begin{aligned}
& 3 x^{2}+2 x+1 \\
& (x / y)+c
\end{aligned}
$$

Cu exprosacos

$$
\begin{aligned}
& a^{*} b-c \\
& (m+n)^{*}(x+y) \\
& a^{*} b / c \\
& 3^{*} x^{*} x+2^{*} x+1 \\
& x / y+c
\end{aligned}
$$

Decision Control and looping statements
The control statements are used to control the cwesore in a program according to the condition or according to the irequirment in a loop. Further we can say, changing the order or flow controls; these are requircol. There axe mainly three types of cont hal atatement or flow controls. These are mainly three types of control statement or flow controls. These are illustrated below:

1. Branching Statement: C. Supports many branching statement depending upon their flow of Contred and according their decision making policy. So it is also called decision making Statements. The, Various broaching statements used ad as.
(a) If statement
(b) Switch statement
(c) Conditional operator statement.
(a) If statement:

There are mainly four types of if statements used in the c. programing as:
(1). Simple if Statement
(ii) If-else statement
(iii) rested if statement
(iv) else - if oritadder if or mult-condition of statement.
(i) Simple if statement

Syntax

truetase statement
$(P-1)$ ($)$ write a C program too your Computer mark if
your mark is greater than $>)$ ' 90° they display
you are the best. you are the best.
\# Include \langle stdio. ht
\# include 〈conio. n 〉
$\operatorname{main}()$
δ
int mark.
print f (") 1 n enter your nark $\mid n "$; ;
Scanned by CamScanner
scan P (4% d, " oponark);
If $=(\operatorname{mark}>90)$)

$$
\varepsilon
$$

print ("you are the best in");

$$
\frac{\operatorname{getch}()}{3} \text {; }
$$

(ii) If else statements

Syntax
If (condition)
torture statement; B
else
ε
false statement;
(p-2) Write a c program to enter the mark if the mark. is greater than 90°. then display you axe the best other wise you are the worst.
\# include <stdio.h〉
\# include \{conio.h \}
$\operatorname{main}()$

$$
\mathcal{E}
$$

Ind mark;
print f ("enter your mark 10 ") ;
scant (11% d", R mark);

$$
\text { If }(\text { mark }>90)
$$

print ("your are the bes ti")
else
\qquad print $f($ you are the worst $\mid n$ ");
$\frac{\operatorname{getch}() ;}{3}$
\qquad

Output.
entree. your mark 85
you ore the worst.
(1-3) Write a program ion C., find the greatest between the two number using if else condition.

Syotare
If (condition)
E
true statement

$$
3
$$

\# Include <stelio. ht
\# include \langle conto. h 〉
$\operatorname{maio}()$
E
Int $a, b ;$
present $f(" 1 n$ entree the two $n 0.10 ")$)
$\operatorname{sen} f(4 \% d \% d, \& a,<b)$;

$$
\frac{\text { If }(a>b)}{c}
$$

print $f\left(\frac{4}{3} a\right.$ is greater $\left.1 n "\right)$;
else

$$
\varepsilon
$$

print $f\left(4 b\right.$ is greater $\left.1 n^{\prime \prime}\right)$; $\operatorname{getch}_{2}^{3}() ;$

PP y inv ate a preagecanming C^{10} chert ant number is

HR Include＜ctedio．h〉
\＃Include 〈conio．h〉
$\operatorname{main}()$

Int number；
print f（＂enter any no．In＂）；
scan（ $11 \% d "$ ，\＆number）；
if（number $\% Q=2)$ ；
c
print（＂Rv en－number 10 ＂）；
else

（P－5）write a program ce to findout gretest number among 3 number．
\＃include＜stdio． 1 ）\rangle
\＃incluale＜conio．h〉
marco（）

$$
\mathcal{c}
$$

Int a, b, c
print $f($＂enter any three number $\backslash n ")$ ；
scan f（ $1 \% d \% d \%$＂，\＆$a, 4 b, \& e)$ ；
If $(a>b<\alpha-a>c)$ ；

$$
\varepsilon
$$

print of（＂a is greater $\ln n)$ ；
else of $(b>a+t, b>c)$
prints $("$ bis greatec. n " $)$;
3
else
c

getch ();
(iii) Nlested if statement:

Syndan.
If (Condition 1)

(Pcb) Write a program c to find un greatest among 3 number using nested in sendiction.
\# include <stelio. n 〉
\# include (conic. h 〉
main ()

$$
\delta
$$

int a, b, c;
print f ("enter any three number $1 n "$);
scant $(11 \% d \% d N \% d$ " \& $a, \& b, \& C)$; else
ε

$$
\begin{gathered}
\text { If }(b>c) \\
\delta
\end{gathered}
$$

else

$$
\varepsilon
$$

print $\binom{$ " C is greater 1 n" }{3} ;
$\frac{\text { Vetch (() ; }}{3}$
(b) Switch statement
syntax
$\frac{\text { Switch (Variable) }}{\text { E }}$
case Value 1:
block 1;
break;
case Value 2:
block 2;
break;
case value n :
block 0 ；
breach＇，
deface：
blocknti； \}
$(P-7)$ Write a program in C to print the colour according to the code that is 1 for red， 2 for green， 3 for white， 4 for yellow．
\＃include＜station．n 〉
\＃Include 〈conio．h〉
Void main（）

$$
\varepsilon
$$

int code．
print f（＂main menu ln＂）；
print（＂1 for red $n n$＂）；
Prints（＂2 For green）n＂）；
Print f（＂3 for white $1 n^{\prime}$ ）；
Print f（＂y for yellow）${ }^{\text {＂} ") ; ~}$
Print（＂enter any code $10 n$＂）；
scan f（＂$\%$ d＂，e code）；
sisitch（code）
Case 1：
Print F（＂Colour．is Red 10 ＂）； break；
case 2：
print f（＂colour is green）n＂＂）？ beak；
case 3：
print f（＂colonic is white $\mid n ")$ ； break；
case 4：

Print f ("colour is yellow in "i);
break;
ofefosilt;
print f ("out of choice In ");

Output
main mene
1 for red
2 for green
3 for white
4 for yellow
enter any code
1
colour is Red.
(c) Conditional Control statement:
syntax
Exp 1. ? Exp 2: Exp 3;
Example

$$
x=(a>b) ? a: b ;
$$

If $\quad a=5$

$$
b=10
$$

then $(5>10) ? 5: 10 ;$ No.
If $\quad a=7$

$$
b=3
$$

then $(7>3)$? $7: 3$;

2．Looping statements：－
When a single statement or a group of statements will be executed again and aravio io a program then such type processing is called loop．The looping Statements used in C－language are：
（b）while statement or Chile loop
（b）do statement or do loop
（c）for statement or for loop
（d）Nested for loop statement．
（c）For loop
Syntax
For（initiation；condition；Increment／decrement）
ह,
statement；

$$
3
$$

（p－8）Write a program of c sum of n rand om number using for loop．

$$
\begin{gathered}
\text { sum }=\text { sum }+ \text { ' }^{\prime} \text { '; } \\
\text { print } f\left(\text { "sum }=\% d^{\prime \prime}\right. \text {, sum); } \\
\text { getch } c) ; \\
3
\end{gathered}\left\{\begin{array}{l}
\text { out put } \\
0+1=1 \\
1+2=3 \\
2+3=6 \\
6+4=10 \\
0+5=15
\end{array}\right.
$$

$$
\begin{aligned}
& \text { \# Enctude 〈staio.h〉 } \\
& \text { \# include. <congo h } \text { 〉 } \\
& \operatorname{main}() \\
& \varepsilon \\
& \text { - int } i, \text { sum }=0, n ; \\
& \text { print f ("enter the value of o } \backslash n \text { "); } \\
& \text { scant (" } \% \text { d", \&n); } \\
& \text { for }(i=1 ; i<z=;+1) \text {. }
\end{aligned}
$$

（a）While loop
Syntax
While（test Condition）

$$
\Sigma
$$

Clock of statements；

$$
3
$$

Statement－x ；
$(p-q)$ Write a program 5 natural number using while loop．
\＃include 〈stalio．h〉
\＃include 〈conio．ht
Vaidmain（）

$$
\delta
$$

int is sum $=0, n ;$
print f（＂enter value of n＂小人＂）；
scant（ $4 \% d$ n，\＆n）；

$$
\dot{C}=1 ;
$$

while $(i<=A)$

$$
\begin{aligned}
& \text { scan econ cum }=\text { sent; } \\
& i++ \\
& 3 \\
& \text { print } f(4 \text { sum }=\% \text { \% " sum }) ; \\
& \text { getch }() ; \\
& ?
\end{aligned}
$$

b）do while
Syntera
do

$$
\Sigma
$$

Statement

$$
3
$$

white（condition）；
$(P-10)$ Write a prrogram of C essing 5 randam numbiber using do while．

$$
\begin{aligned}
& \text { \#include <stdio.h〉 } \\
& \text { \#inchude 〈conio.h〉 } \\
& \text { Void main () } \\
& \delta \\
& \text { int } i \text {, sum }=0, n \text {; } \\
& \text { print } f \text { ("entrec. Value of n) } n \text { "); } \\
& \text { Scanf (} 4 \% \text { ", \& n } 1 n^{n} \text {); } \\
& \text { do } \\
& 8 \\
& \text { scon-scanoct } c \text { 8um- } 8 \text { un ti; } \\
& i+t \\
& 3 \text { while }(i<n) \\
& \text { printf ("sum }=\% \cdot d \text { ", I sum); } \\
& \operatorname{getch}() \text {; } \\
& 3
\end{aligned}
$$

（d）Nested for statement：－
syatam
for（enitalization；Condition；increment／decxement）． §
（ P－11）Write，a program inc cusing the concept of oested for loop．
\＃include＜stelio．h〉
\＃include 〈conio．h〉
main（）
8
$\cot n=2, m=3, i, j ;$
prient f（＂Out put is as $1 n ")$ ；
for $(i=1, i<n, i++)$
δ
for $(j-1, k<m, j+t)$

Print it（ucla in＂）；
print（＂akin＂）；

$$
\delta
$$

$\frac{\text { Vetch（）；}}{3}$
3
（－12）Write a program in C to display the vesult of addition substation，multiplication a division of two number by taking different variables．

$$
\begin{aligned}
& \text { \# include. }\langle\text { stelio. } h \text { 〉 } \\
& \text { \# include. 〈conio. h 〉 } \\
& \text { Void main () } \\
& \varepsilon \\
& \operatorname{Ent} a=5, b=6 \text {; } \\
& a=a+b \text {; } \\
& \text { print ("sum is }=\% d) \text { "", } a \text {); } \\
& \text { int } c=6, d=5 \text {; } \\
& c=c-d ; \\
& \text { print ("sub is }=\% d \cdot \mid n ", C \text {) } \\
& \text { int } e=7, f=5 \text {; } \\
& e=e \text { 古; } \\
& \text { print } f \text { (} \mathrm{mul} \text { is }=\% d / n ", e \text {); } \\
& \text { int } g=8, h=2 \\
& g=\frac{g}{h} ;
\end{aligned}
$$

$\operatorname{Print} f("$ div is $=\operatorname{Od} \ln ", g)$ ； int $i=5, j=6$

$$
i=i \% d j
$$

print E（ 4 mod is $=\% \mathrm{Od} / \mathrm{n} 7, i)$ ； fetch（）；

$$
3
$$

Output

$$
\begin{aligned}
& \text { add }=11 \\
& \text { sub }=1 \\
& \text { mule }=35 \\
& \text { div }=4 \\
& \text { mod }=5 .
\end{aligned}
$$

3. Jumping Statement :-

There are three different corbels used to jump from one C. program statement to another and make the execution of the programming procedure fast. These three jumping controls are
(a) go to statement
b) break statement
(c) Continue statement
(a) go to statement

unconditions forward ga to
Syntax
Statement 1；
Statement 2；
gotolabel；
statement 3；
Statement 4；
label；
Statement 5；
statement 6；－
（ $P-13$ ）Write a program c to add l sub two number by using uncondelteonal go to statement．
\＃inclucle 〈s．dio．h）
\＃include 〈conio．h〉
Void main（）

$$
\varepsilon
$$

int a, b, c, d
print f（＂enter the value of $a\infty$＂）；
sen if（ 4% d $\% d,, \operatorname{si}, \operatorname{de} b)$ ；

$$
c=a+b ;
$$

$$
d=a-b ;
$$

prints（＂sum is $=\%$ od $1 n ", c)$ ；
go to $\mathrm{mm} ;$
print $f\left(\right.$ sub b is $\left.=\% d \backslash n^{\prime \prime}, d\right)$ ；
mm＇；
Vetch（1）；

Output
enter the value of $a \& b$ ．

$$
-\frac{6}{7}
$$

Sum is $=13$ ．

Conditional firsiosed go to.
Syntax
Statement 1: \qquad
Statement 2:
If (condition)
go to label;
Statement 3;
Statement 4;
label:
Statement 5;
Statement 6;-

Conditional hackucared go to.
Syntax
Statement: 1;
Statements:
If (condition)
label:
Statement 3;
statement 4;
gotolabel;
statement 5;
Statement 6 ;
(b) Break statement.

Syntax
Fore (initial Value \rightarrow Condition, incroment/decrement) 8
If (conditio n-1)

$$
\mathcal{S}
$$

break;

$$
3
$$

(c) Continue statement
syntax
while (condition-1)
ε
statement 1;
statement 2;
of (conditio n-2)
δ
Continue;

$$
3
$$

statement 3 ;
statement 4; 3
(p-15) program to intereharg soils of two variable without using third variable.
\#Encluale 〈stais. h 〉
\# include \{conis. h \}
$\operatorname{main}()$
δ
int $a=10, b=20$;
print f (u) n Before interchange the value is: $a=\%$), $b=\% d \%, a, b) ;$

$$
\begin{aligned}
& a=a+b ; \\
& b=a-b ; \\
& a=a-b ;
\end{aligned}
$$

print f (4) n after interchange the value is: $a=\% d$, $\left.b=\% d^{n}, a, b\right) ;$
etch (); 3

Output
Before interchange the value is : $a=10 b=20$
After interchange the value is: $a=20 b=10$.
$(P-16)$ program to interchange value of two number using third variable
\＃include Stdio．h 〉
\＃include 〈comion〉
main $($ ）
ε
int $a=10, b=20$, temp；
prints（ u in Before interchange the value is： $a=\% d, b=\% d \eta, a, b) ;$
$\operatorname{tem} p=a ;$

$$
a=b ;
$$

$$
b=\text { temp; }
$$

print f（ 4 In After interchange the value is：

$$
a=\% d, b=\% d ", a, b) j
$$

$$
\frac{\operatorname{getch}}{2}(2 ;
$$

3
Output
Before interchange the value i：$a=10 \quad b=20$
After interchange the value is ：$a=20 \quad d=10$ ．
(P-17) -program to find friterial of a oumber.
\# Include (stelio.h)
\# include <ctos. h 〉
\# include (conio. h 〉
maio ()
ε
int rivim;
eleachescer ();
print t (") minder the number: ");
scant (" $\% d$ ", \& n);

$$
m=1 ;
$$

for $(i=1 ;(L=n ; i+t)$

$$
\begin{gathered}
m=m * i ; \\
3
\end{gathered}
$$

$$
\text { printf (") In factorial of } \left.\% d \text { is }=\% d^{\prime \prime}, n, m\right)=
$$

$$
\operatorname{getch}() ;
$$

Qutput
enter the number: 5
factorial of 5 is $=120$.
（P．－18）program to find the sum of the series．

$$
1+1 / x+1 / x^{2}+1 / x^{3}+\cdots 1 / x^{x}
$$

\＃irclude 〈ctelion〉
\＃incluede 〈dos．h〉
\＃include．\｛math \cdot 个
maios（）

$$
\varepsilon
$$

int i，rus；
float Bem，P ；
print（ $" \backslash n$ enter the base value ：＂）；
scanf（ $4 \% d$ ），\＆x ）；
prient f（ $u \backslash n$ \＆nter the power Valueit）；
Scanf $(u \% d \eta, \& n)$ ；

$$
i=1 ;
$$

$$
\text { Sum }=1 ;
$$

while（i＜30）
ε

$$
\begin{aligned}
& p=\text { pow }(x, i) \\
& \text { sum }=\operatorname{sum}+(1, p) ; \\
& i=?+1 ; \\
& 3 \\
& \text { print } f\left(u \text { in sum is }=\% f^{\prime \prime}, \text { sum }\right) ; \\
& \operatorname{getch}(1) ;
\end{aligned}
$$

Output is：
Enter the base Value： 2
Enter the powervalue：3

$$
\text { Qum is }=1.87 \text {. }
$$

(P-10) program to Ellustrate the conspot of puts) ane (119) with gets () function.
\# Include stdio in'〉
main ()
ε

Char name [20];
puts ("inter any name a ${ }^{11 \text {); }}$
puts (4 The entered name is :");
puts (name);
3

Output is:
Enter any name yoshmina

The entered name is: Yoshmike.

CHAPTER - 7

Complex Data Types

C has the usual facilities for grouping things together to form composite typesarrays and records (which are called "structures"). The following definition declares a type called "struct fraction" that has two integer sub fields named "numerator" and "denominator". If you forget the semicolon it tends to produce a syntax error in whatever thing follows the struct declaration.
struct fraction \{
int numerator;
int denominator;
\}; // Don't forget the semicolon!
This declaration introduces the type struct fraction (both words are required) as a new type. C uses the period (.) to access the fields in a record. You can copy two records of the same type using a single assignment statement, however $==$ does not work on structs.
struct fraction f1, f2; // declare two fractions
f1. numerator $=22$;
f1 denominator $=7$;
$\mathrm{f} 2=\mathrm{f} 1$; // this copies over the whole struct

Arrays

The simplest type of array in C is one which is declared and used in one place. There are more complex uses of arrays which I will address later along with pointers. The following declares an array called scores to hold 100 integers and sets the first
and last elements. C arrays are always indexed from 0 . So the first int in scores array is scores[0] and the last is scores[99].
int scores[100];
scores $[0]=13 ; / /$ set first element
scores[99] = 42; /l set last element

0
scores
Index 1299

Someone else's memory off either end of the array - do not read or write this memory. There is space for each int element in the scores array - this element is referred to as scores[0].
-56732254142
These elements have random values because the code has not yet initialized them to anything. The name of the array refers to the whole array. (implementation) it works by representing a pointer to the start of the array.

It's a very common error to try to refer to non-existent scores[100] element. C does not do any run time or compile time bounds checking in arrays. At run time the code will just access or mangle whatever memory it happens to hit and crash or misbehave in some unpredictable way thereafter. "Professional programmer's language." The convention of numbering things 0 ..(number of things -1) pervades the language. To best integrate with C and other C programmers, you should use that sort of numbering in your own data structures as well.

Multidimensional Arrays

The following declares a two-dimensional 10 by 10 array of integers and sets the first and last elements to be 13 .
int board [10][10];
board $[0][0]=13$;
board[9][9] $=13$;

The implementation of the array stores all the elements in a single contiguous block of memory. The other possible implementation would be a combination of several distinct one dimensional arrays -- that's not how C does it. In memory, the array is arranged with the elements of the rightmost index next to each other. In other words, board[1][8] comes right before board[1][9] in memory. (highly optional efficiency point) It's typically efficient to access memory which is near other recently accessed memory. This means that the most efficient way to read through a chunk of the array is to vary the rightmost index the most frequently since that will access elements that are near each other in memory.

Array of Structs

The following declares an array named "numbers" which holds 1000 struct fraction's. struct fraction numbers[1000];
numbers[0].numerator $=22 ; / *$ set the 0 th struct fraction */
numbers[0].denominator $=7$;
Here's a general trick for unraveling C variable declarations: look at the right hand side and imagine that it is an expression. The type of that expression is the left hand side. For the above declarations, an expression which looks like the right hand side (numbers[1000], or really anything of the form numbers[...]) will be the type on the left hand side (struct fraction).

Pointers

We'll see shortly how a pointer is set to point to something -- for now just assume the pointer points to memory of the appropriate type. In an expression, the unary * to the left of a pointer dereferences it to retrieve the value it points to.

There's an alternate, more readable syntax available for dereferencing a pointer to a struct. A " $->$ " at the right of the pointer can access any of the fields in the struct. So the reference to the numerator field could be written f 1 ->numerator.

Here are some more complex declarations...
struct fraction** fp; // a pointer to a pointer to a struct fraction
struct fraction fract_array[20]; // an array of 20 struct fractions
struct fraction* fract_ptr_array[20]; // an array of 20 pointers to

// struct fractions

One nice thing about the C type syntax is that it avoids the circular definition problems which come up when a pointer structure needs to refer to itself. The following definition defines a node in a linked list. Note that no preparatory declaration of the node pointer type is necessary.
struct node \{
int data;
struct node* next;
\};

The \& Operator

The \& operator is one of the ways that pointers are set to point to things. The \& operator computes a pointer to the argument to its right. The argument can be any variable which takes up space in the stack or heap (known as an "LValue" technically). So \&i and \&(f1->numerator) are ok, but \&6 is not. Use \& when you have some memory, and you want a pointer to that memory.

```
void foo() {
int* p; /| p is a pointer to an integer
int i; // i is an integer
p=&i; // Set p to point to i
*}p=13;// Change what p points to -- in this case i -- to 1
// At this point i is 13. So is *p. In fact *p is i.
}
p
i 13
```

When using a pointer to an object created with \& , it is important to only use the pointer so long as the object exists. A local variable exists only as long as the function where it is declared is still executing (we'll see functions shortly). In the above example, i exists only as long as foo() is executing. Therefore any pointers which were initialized with \&i are valid only as long as foo() is executing. This "lifetime" constraint of local memory is standard in many languages, and is something you need to take into account when using the \& operator.

NULL

A pointer can be assigned the value 0 to explicitly represent that it does not currently have a pointee. Having a standard representation for "no current pointee" turns out to be very handy when using pointers. The constant NULL is defined to be 0 and is typically used when setting a pointer to NULL. Since it is just 0 , a NULL pointer will behave like a boolean false when used in a boolean context. Dereferencing a NULL pointer is an error which, if you are lucky, the computer will detect at runtime -whether the computer detects this depends on the operating system.

Pitfall -- Uninitialized Pointers

When using pointers, there are two entities to keep track of. The pointer and the memory it is pointing to, sometimes called the "pointee". There are three things which must be done for a pointer/pointee relationship to work...
(1) The pointer must be declared and allocated
(2) The pointee must be declared and allocated
(3) The pointer (1) must be initialized so that it points to the pointee (2)

The most common pointer related error of all time is the following: Declare and allocate the pointer (step 1). Forget step 2 and/or 3. Start using the pointer as if it has been setup to point to something. Code with this error frequently compiles fine, but the runtime results are disastrous. Unfortunately the pointer does not point anywhere good unless (2) and (3) are done, so the run time dereference operations on the pointer with * will misuse and trample memory leading to a random crash at some point.

```
{
```

int* p;
*p = 13; // NO NO NO p does not point to an int yet
// this just overwrites a random area in memory
\}
-14346
p
i
Of course your code won't be so trivial, but the bug has the same basic form: declare a pointer, but forget to set it up to point to a particular pointee.

Using Pointers

Declaring a pointer allocates space for the pointer itself, but it does not allocate space for the pointee. The pointer must be set to point to something before you can dereference it.

Here's some code which doesn't do anything useful, but which does demonstrate (1)
(2)
(3) for pointer use correctly...

```
int* \(p ; \quad / /(1)\) allocate the pointer
int \(i ; \quad\) // (2) allocate pointee
struct fraction f1; // (2) allocate pointee
\(\mathrm{p}=\) \&i; \(\quad / /(3)\) setup p to point to i
* \(p=42 ; \quad / /\) ok to use \(p\) since it's setup
\(p=\&(f 1\).numerator); \(\quad / /(3)\) setup \(p\) to point to a different int
* \(p=22 ;\)
\(p=\&(f 1\) denominator); // (3)
* \(p=7\);
```

So far we have just used the \& operator to create pointers to simple variables such as i. Later, we'll see other ways of getting pointers with arrays and other techniques.

C Strings

C has minimal support of character strings. For the most part, strings operate as ordinary arrays of characters. Their maintenance is up to the programmer using the standard facilities available for arrays and pointers. C does include a standard library of functions which perform common string operations, but the programmer is responsible for the managing the string memory and calling the right functions. Unfortunately computations involving strings are very common, so becoming a good C programmer often requires becoming adept at writing code which manages strings which means managing pointers and arrays.

A C string is just an array of char with the one additional convention that a "null" character (' 10^{\prime} ') is stored after the last real character in the array to mark the end of
the string. The compiler represents string constants in the source code such as "binky" as arrays which follow this convention. The string library functions (see the appendix for a partial list) operate on strings stored in this way. The most useful library function is strcpy(char dest[], const char source[]); which copies the bytes of one string over to another. The order of the arguments to strcpy() mimics the arguments in of ' $=$ ' - - the right is assigned to the left. Another useful string function is strlen(const char string[]); which returns the number of characters in C string not counting the trailing ' 10 '.

Note that the regular assignment operator $(=)$ does not do string copying which is why $\operatorname{strcpy}()$ is necessary. See Section 6, Advanced Pointers and Arrays, for more detail on how arrays and pointers work.

The following code allocates a 10 char array and uses strcpy() to copy the bytes of the string constant "binky" into that local array.
char localString[10];
strcpy(localString, "binky");
binky $0 \times x \times x$
012 ...
localString

The memory drawing shows the local variable localString with the string "binky" copied into it. The letters take up the first 5 characters and the ' 10 ' char marks the end of the string after the ' y '. The x's represent characters which have not been set to any particular value. If the code instead tried to store the string "I enjoy languages whichh have good string support" into localString, the code would just crash at run time since the 10 character array can contain at most a 9 character string. The large
string will be written passed the right hand side of localString, overwriting whatever was stored there.

String Code Example

Here's a moderately complex for loop which reverses a string stored in a local array. It demonstrates calling the standard library functions $\operatorname{strcpy}()$ and $\operatorname{strlen}()$ and demonstrates that a string really is just an array of characters with a 'IO' to mark the effective end of the string. Test your C knowledge of arrays and for loops by making a drawing of the memory for this code and tracing through its execution to see how it works.

$$
\{
$$

char string[1000]; // string is a local 1000 char array
int len;
strcpy(string, "binky");
len = strlen(string);
/*

Reverse the chars in the string:
i starts at the beginning and goes up
j starts at the end and goes down
i/j exchange their chars as they go until they meet
*/
int i, j;
char temp;
for $(\mathrm{i}=0, \mathrm{j}=$ len $-1 ; \mathrm{i}<\mathrm{j} ; \mathrm{i}++, \mathrm{j}-\mathrm{-})\{$
temp $=$ string[i];

"Large Enough" Strings

The convention with C strings is that the owner of the string is responsible for allocating array space which is "large enough" to store whatever the string will need to store. Most routines do not check that size of the string memory they operate on, they just assume its big enough and blast away. Many, many programs contain declarations like the following...

```
{
```

char localString[1000];
\}
The program works fine so long as the strings stored are 999 characters or shorter. Someday when the program needs to store a string which is 1000 characters or longer, then it crashes. Such array-not-quite-big-enough problems are a common source of bugs, and are also the source of so called "buffer overflow" security problems. This scheme has the additional disadvantage that most of the time when the array is storing short strings, 95% of the memory reserved is actually being wasted. A better solution allocates the string dynamically in the heap, so it has just the right size. To avoid buffer overflow attacks, production code should check the size of the data first, to make sure it fits in the destination string. See the stricpy() function in Appendix A.

char*

Because of the way C handles the types of arrays, the type of the variable localString above is essentially char*. C programs very often manipulate strings using variables of type char* which point to arrays of characters. Manipulating the actual chars in a string requires code which manipulates the underlying array, or the use of library functions such as strcpy() which manipulate the array for you. See Section 6 for more detail on pointers and arrays.

TypeDef

A typedef statement introduces a shorthand name for a type. The syntax is... typedef <type><name>;

The following defines Fraction type to be the type (struct fraction). C is case sensitive, so fraction is different from Fraction. It's convenient to use typedef to create types with upper case names and use the lower-case version of the same word as a variable.
typedef struct fraction Fraction;
Fraction fraction; // Declare the variable "fraction" of type "Fraction"
// which is really just a synonym for "struct fraction".

The following typedef defines the name Tree as a standard pointer to a binary tree node where each node contains some data and "smaller" and "larger" subtree pointers.
typedef struct treenode* Tree;
struct treenode \{
int data;
Tree smaller, larger; // equivalently, this line could say
f: /l "struct treenode *smaller, *larger"

Functions
All languages have a construct to separate and package blocks of code. C uses the "function" to package blocks of code. This article concentrates on the syntax and peculiarities of C functions. The motivation and design for dividing a computation into separate blocks is an entire discipline in its own.
A function has a name, a list of arguments which it takes when called, and the block of code it executes when called. C functions are defined in a text file and the names of all the functions in a C program are lumped together in a single, flat namespace. The special function called "main" is where program execution begins. Some programmers like to begin their function names with Upper case, using lower case for variables and parameters, Here is a simple C function declaration. This deciares a function named Twice which takes a single int argument named num. The body of the function computes the value which is twice the num argument and returns that value to the caller.

Computes double of a number.
Works by tripling the number, and then subtracting to get back to double.

*/

static int Twice(int num) \{
int result = num * 3;
result $=$ result $\boldsymbol{-}$ num;
return(result);

Syntax

The keyword "static" defines that the function will only be available to callers in the file where it is declared. If a function needs to be called from another file, the function cannot be static and will require a prototype -- see prototypes below. The static form is convenient for utility functions which will only be used in the file where they are declared. Next, the "int" in the function above is the type of its return value. Next comes name of the function and its list of parameters. When referring to a function by name in documentation or other prose, it's a convention to keep the parenthesis () suffix, so in this case I refer to the function as "Twice()". The parameters are listed with their types and names, just like variables. Inside the function, the parameter num and the local variable result are "local" to the function -- they get their own memory and exist only so long as the function is executing. This independence of "local" memory is a standard feature of most languages.

The "caller" code which calls Twice() looks like... int num $=13$;
int $\mathrm{a}=1$;
int $b=2$;
$\mathrm{a}=$ Twice(a); // call Twice() passing the value of a
$b=$ Twice($b+$ num); // call Twice() passing the value $b+$ num
|| $a==2$
$/ / \mathrm{b}==30$
// num == 13 (this num is totally independent of the "num" local to Twice()

Call by Value vs. Call by Reference

C passes parameters "by value" which means that the actual parameter values are copied into local storage. The caller and callee functions do not share any memory --
they each have their own copy. This scheme is fine for many purposes, but it has iwodisadvantages.

1) Because the callee has its own copy, modifications to that memory are not unicated back to the caller. Therefore, value parameters do not allow the information back to the caller, but not all problems can be with the single return value.
2) Sometimes it is undesirable to copy the value from the caller to the callee because the value is large and so copying it is expensive, or because at a conceptual level copying the value is undesirable.
The alternative is to pass the arguments "by reference". Instead of passing a copy of a value from the caller to the callee, pass a pointer to the value. In this way there is only one copy of the value at any time, and the caller and callee both access that one value through pointers.
Some languages support reference parameters automatically. C does not do this the programmer must implement reference parameters manually using the existing pointer constructs in the language.

Swap Example

The classic example of wanting to modify the caller's memory is a swap() function which exchanges two values. Because C uses call by value, the following version of Swap will not work...
void Swap(int x, int y) \{ // NO does not work int temp;
temp $=x$;
$x=y$; // these operations just change the local x, y, temp
$y=$ temp; // -- nothing connects them back to the caller's a, b
\}
// Some caller code which calls Swap()...
int $a=1$;
int $b=2$;
Swap(a, b);
Swap() does not affect the arguments a and b in the caller. The function above only operates on the copies of a and b local to Swap() itself. This is a good example of how "local" memory such as (x, y, temp) behaves -- it exists independent of everything else only while its owning function is running. When the owning function exits, its local memory disappears.

Reference Parameter Technique

To pass an object X as a reference parameter, the programmer must pass a pointer to X instead of X itself. The formal parameter will be a pointer to the value of interest. The caller will need to use \& or other operators to compute the correct pointer actual parameter. The callee will need to dereference the pointer with * where appropriate to access the value of interest. Here is an example of a correct Swap() function.
static void Swap(int* x, int* y) \{ // params are int* instead of int int temp;
temp $=$ * x; /l use * to follow the pointer back to the caller's memory
x $={ }^{} y$;

* $y=$ temp;
\}
int $a=1$;
in $\mathrm{b}=2$;
swap (\&a, \&b); 2

Things to notice...
-The formal parameters are int* instead of int.

- The caller uses \& to compute pointers to its local memory (a,b).
- The callee uses * to dereference the formal parameter pointers back to get the caller's memory.

Since the operator \& produces the address of a variable -- \& a is a pointer to a. In Swap() itself, the formal parameters are declared to be pointers, and the values of interest (a, b) are accessed through them. There is no special relationship between the names used for the actual and formal parameters. The function call matches up the actual and formal parameters by their order -- the first actual parameter is assigned to the first formal parameter, and so on. I deliberately used different names (a, b vs x, y) to emphasize that the names do not matter.

const

The qualifier const can be added to the left of a variable or parameter type to declare that the code using the variable will not change the variable. As a practical matter, use of const is very sporadic in the C programming community. It does have one very handy use, which is to clarify the role of a parameter in a function prototype...
void foo(const struct fraction* fract);
In the foo() prototype, the const declares that foo() does not intend to change the struct fraction pointee which is passed to it. Since the fraction is passed by pointer, we could not know otherwise if foo() intended to change our memory or not. Using the const, $f(\mathrm{O}()$ makes its intentions clear. Declaring this extra bit of information helps to clarify the role of the function to its implementor and caller.

Bigger Pointer Example

The following code is a large example of using reference parameters. There are several common features of C programs in this example...Reference parameters are used to allow the functions Swap() and IncrementAndSwap() to affect the memory of their callers.

There's a tricky case inside of IncrementAndSwap() where it calls Swap() -- no additional use of $\&$ is necessary in this case since the parameters x, y inside InrementAndSwap() are already pointers to the values of interest. The names of the variables through the program (a, b, x, y, alice, bob) do not need to match up in any particular way for the parameters to work. The parameter mechanism only depends on the types of the parameters and their order in the parameter list -- not their names. Finally this is an example of what multiple functions look like in a file and how they are called from the main() function.

```
static void Swap(int* a, int* b) {
```

int temp;
temp $=$ *a;
*a = *b;

* $\mathrm{b}=$ temp;
\}
static void IncrementAndSwap(int* x, int* y) \{
(*x)++;
(*y) ${ }^{*+}$;
$\operatorname{Swap}(\mathrm{x}, \mathrm{y})$; // don't need \& here since a and b are already // int*'s.
\}
int main()

$$
\text { int alice }=10 ;
$$

$$
\text { int bob }=20 ;
$$

Swap(\&alice, \&bob);
|| at this point alice $==20$ and $b o b==10$
IncrementAndSwap(\&alice, \&bob);
" at this point alice==11 and bob==21
return 0;

