JHARSUGUDA ENGINEERING SCHOOL, JHARSUGUDA DEPARTMENT OF CIVIL ENGINEERING LESSON PLAN PROGRAMME:DIPLOMA IN CIVIL ENGINEERING

SUBJECT-STRUCTURAL MECHANICS (Th 1)

Name Of The Faculty- Sri Amit Kumar Sahu & Sri Dhanurjaya Behera

Session-Winter 2023 SEMESTER-3rdsem

Chapter	Week No.	Class Day	Lecture No.	Topic to be Covered
1				REVIEW OF BASIC CONCEPTS
		1st	1	Definitions of Force, Moment, support conditions, Conditions of equilibrium.
	1st	2nd	2	Centroid of geometrical figures, centroid of composite figures.
	150	3rd	3	Moment of Inertia-Definition, Parallel axis& Perpendicular axis Theorems.
		4th	4	M.I. of plane lamina & different engineering section.
2				SIMPLEANDCOMPLEX STRESS,STRAIN
	1st	5th	5	Introduction to stresses and strains, Mechanical properties of materials
	2nd	1st	6	Types of stresses, Types of strains, Complimentary shear.
		2nd	7	Hooke's law, Elastic Constants, Derivation of relationship between the elastic constants.
		3rd	8	Concept of Stress-Strain curve of a ductile material.
		4th	9	Significance of percentage elongation and reduction in area of cross section.
		5th	10	Deformation of prismatic bars due to uniaxial load.
	3rd	1st	11	Deformation of prismatic bars due to its self weight.

2	i i i i i	2nd	12	Elongation and Contraction, Poisson's Ratio, volumetric strain.
		3rd	13	2.3 Introduction to Principal stresses and strains, Occurrence of normal and tangential stresses.
	3rd	4th	14	Concept of Principal stress and Principal Planes, major and minor principal stresses.
	iv is	5th	-15	Streses in an oblique section of a body subjected to a direct stress in one plane and in two mutually perpendicular direction.
		1st	- 16 -	Streses in an oblique section of a body subjected to a simple shear stress only
				and a direct shear stress accompained by a simple shear stress.
	4th	2nd	17	Streses in an oblique section of a body subjected to direct stress in two mutually perpendicular direction accompanied by a simple shear stress.
		3rd	18	Mohr's Circle and its basic concepts.
		4th	. 19	Application of Mohr's circle to solve problems of complex stresses.
3	***			STRESSES IN BEAMS AND SHAFTS
	4th	5th	20	3.1 Bending stress in beams – Theory of simple bending & its Assumptions.
		1st	21	Equation for Flexure, Position of N.A. and Centroidal Axis.
		2nd	22	Flexural rigidity & Significance of Section modulus.
	5th	3rd	23	3.2 Shear stress distribution in beams and standard sections symmetrical about vertical axis.
		4th	24	Stresses in shafts due to torsion-Concept of torsion, basic assumptions of pure torsion.
		5th	25	torsion of solid and hollow circular sections, polar moment of inertia.
		1st	26	3.3 Concept torsional rigidity, equation of torsion.
	6th —	2nd	27	3.4 Concept of combined bending and direct stresses.

Page 2 of 5

3			3rd		8	Conditions for no tension.	
	6th		4th		9	Middle third/fourth rule, Core or Kern for different sections, chimneys, dams and retaining walls.	
4						COLUMNS AND STRUTS	
	6th		5th	1 - 3 - 3	30		
			. 1st	S 12.13	31	4.1 Definitions of Short and Long columns, End conditions & Effective length. Slenderness ratio, Euler's theory of long colum.	
	7th	1	2nd	3	2	Critical load for Columns with different end conditions.	
		1	3rd	3.	3.	CLASS TEST	
	54.5	- 2	- 3.				
		7 / 17	4th	-	~: -	SHEAR FORCE AND BENDING MOMENT	
-	7th		in the second	34		5.1 Types of Load, Types of Support, Types of Beams based on support conditions.	
		, i V	5th	35		Calculation of support reactions using equations of static equilibrium.	
			1st	36	5	2 Concept of Sheep Form	
		100	2nd		S	.2 Concept of Shear Force and Bending Moment, Signs Convention for	
	8th	_	and 3rd	37	R	elation between intensity of load, S.F and B.M.	
4				38	[5.1	r and B.M diagrams for Cantilever beams.	
120			th	39	S.F	and B.M diagrams for Simply supported beams.	
-			th	40	Dis	cussion of different problems regarding to change	
				41	S.F	and B.M diagrams for Over hanging beams.	
	Yes .	2nd	1	42			
	9th	3rd	A .	43	Discu	sept and calculation of maximum BM, Point of contra flexure.	
, t. t.	5-77			44	CLAS	ssion of various problems regarding to above concept.	
					STUDI REFER	S TEST QUSTIONS DISCUSSION & DISTRIBUTION OF EVALUATED ANSWER SHEET TO THE LENCES.	
		5th				ISSION OF ASSIGNMENT-1 QUESTIONS.	

6				SLOPE AND DEFLECTION
		1st :	46	6.1 Basic concept of slope and deflection for various beam with boundary conditions.
		2nd	47	Determination of slope and deflection of Cantilever beam-by double integration method.
2		3rd	48	6.2 Determination of slope and deflection of Cantilever beam-by Macaulay's method.
	10th	4th	49	Determination of slope and deflection of simply supported beam-by double integration method.
		5th	50	Determination of slope and deflection of simply supported beam-by Macaulay's method.
		1st	51	calculation of maximum slope and deflection at free end of a cantilever under various loading condition.
		2nd	52	calculation of maximum slope and deflection of a simply supported beam under various loading condition.
	11th	3rd	53	Discussion of various problems regarding to the above concept.
		4th	54	Relationship between slope, deflection and curvature.
		5th	55	DISCUSSION OF ASSIGNMENT-2 QUESTIONS.
7				INDETERMINATE BEAMS
		1st	56	7.1 Concept of determinant and indeterminate structure.
		2nd	57	calculation of indeterminacy of different beam.
	12th	3rd	58	Principle of consistent deformation/compatibility.
		4th	59	Analysis of propped cantilever beam.
		5th	60	SF and BM diagrams (point load and udl covering full span)of propped cantilever.
	F 44'	1st	61	Analysis of fixed beam.
	13th	2nd	62	SF and BM diagrams of fixed beam .
1 1000	1	100	.d	

/		3rd	63	Analysis of two span continuous beams by principle of superposition.
	13th	4th	64	SF and BM diagrams of continuous beam.
		5th	65	Discussion of various problems regarding to the above concept.
8				TRUSSES
	14th	1st	66	Types of trusses, statically determinate and indeterminate trusses
		2nd	67	Determination of degree of indeterminacy and stability of trusses.
		3rd	68	Analysis of Truss by Method of joints.
		4th	69	Analysis of Truss by Method of section.
		5th	70	DISCUSSION OF ASSIGNMENT-3QUESTIONS.
9	15th	1st	71	CLASS TEST
		2nd	72	PREVIOUS SEMESTER QUESTIONS DISCUSSION
		3rd	73	PREVIOUS SEMESTER QUESTIONS DISCUSSION
		4th	74	PREVIOUS SEMESTER QUESTIONS DISCUSSION
		5th	75	PREVIOUS SEMESTER QUESTIONS DISCUSSION
		1		

selection of 108/23

Signature of Faculty Member

Counter Signature of H.O.D.