JHARSUGUDA ENGINEERING SCHOOL, JHARSUGUDA					
Department of Civil Engineering					
4th Sem (2nd Year) Summer 2023					
	Theory No: 1 Name of The Faculty: Sri Dhanurjaya Behera, Sri Subject: STRUCTURAL DESIGN - I Swapnashish Patel				
		Swapnashish Pa	tel		
Sl No	Chapter No	No. Of Classes Scheduled	Topics to be covered		
		Scheduled			
1		1	Norking stress method (WSM) 1.1 Objectives of design and detailing. State the different methods of design of concrete structures.		
2		1	1.2 Introduction to reinforced concrete, R.C. sections their behavior, grades of concrete and steel. Permissible stresses, assumption in W.S.M.		
3	1	1	1.3 Flexural design and analysis of single reinforced sections from first principles.		
4		1	1.4 Concept of under reinforced, over reinforced and balanced sections.		
5		1	Revision		
7		1	Revision		
8		1	Practice on Problems		
9		1	Practice on Problems		
7		1	Practice on Problems		
10		1	1.5 Advantages and disadvantages of WSM, reasons for its obsolescence		
11		1	2.Philosophy Of Limit State Method (LSM)2.1 Definition, Advantages of LSM over WSM,		
12		1	IS code suggestions regarding design philosophy.		
13		1	2.2 Types of limit states, partial safety factors for materials strength,		
14		1	characteristic strength, characteristic load, design load, loading on structure as per I.S. 875		
15		1	Revision		
16	2	1	Revision		
17		1	Practice on Problems		
18		1	Practice on Problems		

			2.3 Study of I.S specification
			regarding spacing of reinforcement in
			slab, cover to reinforcement in slab,
		1	beam column & footing, minimum
19			reinforcement in slab, beam &
			column, lapping, anchorage, effective
			span for beam & slab
			Revision
20		1	Revision
21		1	Practice on Problems
22		1	Practice on Problems Practice on Problems
23		1	
			3. Analysis and Design of Single and
		1	Double Reinforced Sections
24		,	(LSM)3.1 Limit state of collapse
			(flexure), Assumptions,
		1	Stress-Strain relationship for
25		1	concrete and steel,
			neutral axis, stress block diagram and
20		1	strain diagram for singly reinforced
26			section
2.7	-	1	Revision
27	4	1	Revision
28	4	1	Practice on Problems
29	_	1	Practice on Problems
30			and a fundar rainforced
			3.2 Concept of under-reinforced,
			over-reinforced and limiting section,
		1	neutral axis co-efficient, limiting
31	3	1	value of moment of resistance and
			limiting percentage of steel required
			for limiting singly R.C. section.
			3.3 Analysis and design:
			determination of design constants,
		1	moment of resistance and area of
32			steel for rectangular sections
			steel for fectaligular sections
	\dashv		3.4 Necessity of doubly reinforced
		1	section, design of doubly reinforced
33		1	rectangular section
34		1	Revision Revision
35	\dashv	1	Practice on Problems
36		1	Practice on Problems Practice on Problems
37		1	Practice on Providing
37		1	4.Shear, Bond and Development
38		1	Length (LSM)
			0 .

*					4.1	Nominal shear stress in R.C.
	39			1	sec cor de	ction, design shear strength of encrete, maximum shear stress, esign of shear reinforcement, mum shear reinforcement, forms of shear reinforcement.
	40	4		1	de	Bond and types of bond, bond stress, check for bond stress, velopment length in tension and mpression, anchorage value for hooks 900 bend and 450 bend and ards lapping of bars, check for development length.
	41			1	re	Numerical problems on deciding whether shear reinforcement is quired or not, check for adequacy of the section in shear. Design of ear reinforcement; Minimum shear reinforcement in beams (Explain through examples only)
	42			1		Revision
	43			1	_	Revision
	44		-	1	_	Practice on Problems
-	45		+	1	+	Practice on Problems
	46			1		5.Analysis and Design of T-Beam (LSM)
	47			1		5.1 General features, advantages, effective width of flange as per IS: 456-2000 code provisions.
	48	5		1		5.2 Analysis of singly reinforced T-Beam, strain diagram & stress diagram, depth of neutral axis, moment of resistance of T-beam section with neutral axis lying within the flange.
	49			1		5.3 Simple numerical problems on deciding effective flange width.(Problems only on finding moment of resistance of T-beam section when N.A. lies within or up to the bottom of flange shall be asked in written examination)
	50			1		Revision

]	1	Revision
51		1	Practice on Problems
52		1	Practice on Problems
53			6.Analysis and Design of Slab and
54		1	Stair case (LSM)
		1	6.1 Design of simply supported one-
55			way slabs for flexure check for
33			deflection control and shear.
			6.2 Design of one-way cantilever
			slabs and cantilevers chajjas for
56		1	flexure check for deflection control
50			and check for development length
			and shear.
			6.3 Design of two-way simply
57	6	1	supported slabs for flexure with
			corner free to lift.
58		1	Revision
59		1	Revision
60		1	Practice on Problems
61		1	Practice on Problems
62		1	6.4 Design of dog-legged staircase
63		1	Practice on Problems
			6.5 Detailing of reinforcement in
64		1	stairs spanning longitudinally.
65		1	Practice on Problems
((1	7 Design of Axially loaded columns
66		1	and Footings (LSM)
(7]	1	7.1 Assumptions in limit state of
67		1	collapse- compression.
		1	7.2 Definition and classification of
68			columns, effective length of column.
			Specification for minimum
			reinforcement; cover, maximum
69		1	reinforcement, number of bars in
09		1	rectangular, square and circular
	7		sections, diameter and spacing of
			lateral ties.
		1	7.3 Analysis and design of axially
70			loaded short square, rectangular and
'0			circular columns (with lateral ties
			only).
71		1	Revision Proctice on Problems
72		1	Practice on Problems

Te .		
73	1	7.4 Types of footing, Design of isolated square column footing of uniform thickness for flexure and shear.
74	1	Revision
75	1	Practice on Problems
	Total 75	

D.Bohera, Lecturer (civil)

Sipotel Sr. led (civil)

Amort learn sith So leet coins).