LECTURE NOTES

ADVANCED CONSTRUCTION TECHNIQUES \& EQUIPMENT (Th-3)

FOR DIPLOMA IN CIVIL ENGINEERING, $6{ }^{\text {TH }}$ SEMESTER

AS PER SCTE \&VT SYLLABUS

Prepared by -Mr. SOUBHAGYA RANJAN MOHANTYDepartment of Civil EngineeringJharsuguda Engineering School ,JharsugudaPo-Kalimandir Road ,Pin-768202https://jesiharsuguda.org.in

Th 3. ADVANCED CONSTRUCTION TECHNIQUES \& EQUIPMENT

Name of the Course: Diploma in Civil Engineering			
Course code:		Semester	6 th
Total Period:	60	Examination	3 hrs
Theory periods:	$4 \mathrm{P} /$ week	Class Test:	20
Maximum marks:	100	End Semester Examination:	80

A. RATIONALE

Current age construction industry is adopting state of art materials and technologies to improve aesthetics, strength, earthquake resistance, services relating to civil construction. The course will help the student to develop a general awareness on these advancements.

B. COURSE OBJECTIVES

On completion of the course students will be able to-

1. Select proper material during construction in domain of advanced materials including fibers, artificial timbers etc.
2. Select appropriate prefabrications in pursuance of standard codes
3. Adopt structural requirements and possible retrofits to improve earthquake resistance
4. Comprehend requirement of various services need to be operational
5. Understand the role of different construction earth moving equipments and select during planning
6. Comprehend necessity of soil reinforcing and prescribe appropriate strategy
C. TOPIC WISE DISTRIBUTION

Chapter	Name of topics	Hours
1	Advanced construction materials	10
2	Prefabrication	08
3	Earthquake Resistant Construction	08
4	Retrofitting of Structures	08
5	Building Services	08
6	Construction and earth moving equipments	10
7	Soil reinforcing techniques	08

D. COURSE CONTENT

1
 Advanced construction materials

1.1 Fibers and Plastics-

Types of fibers- Steel, Carbon, glass fibers, Use of fibers as construction material, properties of Fibers.
Types of plastics- PVC, RPVC, HDPE, FRP, GRP etc. Colored plastic sheets.
Use of plastic as construction material.
1.2 Artificial Timbers - Properties and uses of artificial timber. Types of artificial timber available in market, strength of artificial timber.
1.3 Miscellaneous materials - Properties and uses of acoustics materials, wall claddings, plaster boards, micro-silica, artificial sand, bonding agents, adhesives etc.

Prefabrication
2.1 Introduction, necessity and scope of prefabrication of buildings, history of prefabrication, current uses of prefabrication, types of prefabricated systems, classification of prefabrication, advantages and disadvantages of prefabrication,
2.2 The theory and process of prefabrication, design principle of prefabricated systems, types of prefabricated elements, modular coordination
2.3 Indian standard recommendation for modular planning.

3 Earthquake Resistant Construction

3.1 Building Configuration
3.2 Lateral Load resisting structures
3.3 Building characteristics
3.4 Effect of structural irregularities-vertical irregularities, plan configuration problems.
3.5 Safety consideration during additional construction and alteration of existing Buildings.
3.6 Additional strengthening measures in masonry building-corner reinforcement, lintel band, sill band, plinth band, roof band, gable band etc.

Retrofitting of Structures

4.1 Seismic retrofitting of reinforced concrete buildings :
4.2 -Sources of weakness in RC frame building
4.3-Classification of retrofitting techniques and their uses

Building Services

5.1 Cold Water Distribution in high rise building, lay out of installation
5.2 Hot water supply - General principles for central plants-layout
5.3 Sanitation -soil and waste water installation in high rise buildings
5.4 Electrical services - i) requirements in high rise buildings ii) Layout of wiring types of wiring iii) Fuses and their types iv)Earthing and their uses
5.5 Lighting - Requirement of lighting, Measurement of light intensity
5.6 Ventilation - Methods of ventilation (Natural and artificial Systems of ventilation) problems on ventilation
5.7 Mechanical Services- Lifts, Escalator, Elevators - types and uses.

Construction and earth moving equipments -

6.1 Planning and selection of construction equipments
6.2 Study on earth moving equipments like drag line, tractor, bulldozer, Power shovel
6.3 Study and uses of compacting equipments like tamping rollers, Smooth wheel rollers, Pneumatic tired rollers and vibrating compactors
6.4 Owning and operating cost - problems

7 Soil reinforcing techniques
7.1 Necessity of soil reinforcing.
7.2 Use wire mesh and geo-synthetics.
7.3 Strengthening of embankments, Slope stabilization in cutting and embankments by soil reinforcing techniques.
E. Syllabus Coverage up to Internal Assessment: Chapters 1, 2, 3, 4
F. RECOMMENDED BOOKS

SI. No	Name of Authors	Titles of Book	Name of Publisher
1	 Shrikhande	Earthquake Resistant Design of Structures	Prentice-Hall of India Pvt. Ltd.
2	Swami Saran	Reinforced Soil and its Engineering applications	I.K.International Pvt. Ltd.
3	National building code of India_BIS		
4	Fred \& Greeno	Building Services Hand book	Routledge Publisher
5	B.L. Gupta \& Amit Gupta	Construction Management \& Machinery Limit	Standard Publishers
6	S.K. Duggal,	Earthquake resistant design of structures	Oxford
7	M.R. Samal	Advance Construction and Equipment	Platinum Publisher,Kolkata
8	Hand book on repair \& rehabilitation of RCC buildings- CPWD		

Ch \rightarrow AI ADVANCE CONSTRUCTION MATERIAL
Fibre :-
\rightarrow The fibre is a filament or thread like piece of any material. This term sometimes also referees to a raw material that can be drown into thread.
\rightarrow Fibre is a small piece of reinponcing material pouerning certain characteristics properties. It is a long and thin material can be circular on flat.
\rightarrow Fibre is desired by a parameter called aspect ratio. Aspect ratio :-
It Is the ratio of length of fibre to iss diameter or leas lateral diamerper or dimension in case of fla fibre. It ranges from 30-150.
Types of fibre:-
a) steel fibre e
b) Garcon fibre
c) Glass fibre
d) plastic fibre
e) Asbestos fibre e
f) Jute fibre
j) cellulose fibre
a) Steel fibre :-
\rightarrow steel fibres is one of the most commonly used fibres. Generally round fibres are used. The diameter t may vary from $0.25-0.79 \mathrm{~mm}$.
\rightarrow The steel fibre e is likely to get rousted and lore some of its strength.
\rightarrow use of steel fibre makes significant improvements in thevurial, impact and farizue strength of
\rightarrow The steed fibres have fairly high densik strength if., $280 \mathrm{~N} / \mathrm{mm}^{2}-440 \mathrm{~N} / \mathrm{mm}^{2}$ as wee as high young's Modulus. These are useful for imparting more flexuxal strength as compared to polypropylene fibres.

Properties of steel fibres:-
Following are the properties of steel fibres.
a) Steel fibres are more strong, tough and hard.
b) They are more shang elastic in nature and avoid corctioion and rust stain.
c) They increase the temise strength of concrete.
user:-
a) This fibre has been extensively used in various types of Hreuctures and for vererlays of roads, airfield pavements and bridge deck.
b) Steel fibres are used in shotcrete.
c) They are used in precast concrete construction.
d) They are used in tunnel lining worker.
b) carbon fibre:-
\rightarrow Carbon fibres have very high servile strength $2110 \mathrm{~N} / \mathrm{mm}^{2}$ $2815 \mathrm{~N} / \mathrm{mm}^{2}$ and Young's modulus chopped carbon fibres with candem array may wed. These are, very costly.
\rightarrow It has been reporald that cement complice made with Carbon fibre as reinforcement will have very high modulus of elasticity and flexurtal strength. The spirited
Studies have been shown yod durability.
Properties of carton fibres:-
\rightarrow carbon fibre are chemically iners and are resistant to A0 corrasion.
\rightarrow They have high terrine strength.
\rightarrow carbon fibre have sow thermal expansion and the fibres content about 85% carbon has good frewurcal strength.
\rightarrow They are available in low weight.

User :-
\rightarrow The use of carbon fibres for structures like cladding, panels and shews will have promising future.
\rightarrow carbon fibres are mont commonly wed to reeinforcenemst composite \& materials.
\rightarrow These are used in reinforcement carbon in which they increase termite strength of concrete.
7) Man fibres :-
\rightarrow Glass may be softened and drawn mechanically into thread or glass wood that is finer than silk. A you stand composed of 60. filaments each filament having a diameter of 0.0036 mm , ponsenes she servile strength approaching 70,000 $\mathrm{kg} / \mathrm{m}^{2}$.
\rightarrow A stand flan fibre may be $1 / 55$ of the diameter of human hair but hove a semite strength of seel. These tray be woven into fabric ort used in loosely packed from fort both round and thermal imputation in building
\rightarrow Thermal conductivity of the material reanspes from density. Tests have shown that 25 mm of glass cool is equivalent in terms of thermal insulation of 42 mm of brick on 62 cm of concrete.
Properties of plans fibre :-
\rightarrow Glass fibres has good thermal insulation.
$\rightarrow 94$ has excellent corefenion resiumance and molituree rexiriance.
\rightarrow is has good servile strength.
user of Glam fibre e :-
\rightarrow The glans reinforced plastic is used in the manufacturing corrugated shoesting, mainly used for roo of ign and also wed fort interior parting and. decoration.
\rightarrow Is is used for sound deadening and thermal invitation in was, frosts and ceilings.
\rightarrow Natural Jute fibres are used in plumbing works.
\rightarrow The glass fibres are used for packing and making fabrics and felts.
\rightarrow used for making acid. proof and fire proof fabrics.
\rightarrow used for material of packing for heat, sound, electric insulation.
Q Write down the uses of fibres as construction materiod?
$A M \rightarrow$ fibre is a smas piece of reinforcing material poneving certain charactoristics properties. They can be circular t or flat. The fibre is often described by a convenient parameter caved "aspect ratio". The aspect ratio of the fibre is the ratio of its length to its diameters. Typical aspect ratio ranges from so-150..
\rightarrow fibre reinforced concrete (FRC) is concrete containing fibrous material which increases iss structural integrity, r contains share discrete fibres that are uniformly distributed and randomly oriented. fibres include steel fibres, glam fibres, spasheric fibres and natural fibres.
\rightarrow Fibre -reinforcement is mainly used in shotcrete, but can also be wed in normal concrete. Fibre reinforced normal concrete are mostly used for on-ground floors and pavements, but can be comidered for a wide range of construction pars either alone or with hand-nied rotary.
\rightarrow concrete reinforced with fibres is less expensive than hand-ties rebar, while still increasing the tensile strength many times. Shape, dimension and length of fibre is important. A thin and sheer fibre for example short hair. shaped glans fibre, will only be effective the frost hours after pouring the concrete but with not increase the concrete temple strength.

Scanned by CamScanner
4) Plastic fibre :-
\rightarrow High polymers are the magic construction materials of the current era. They include engineering materials like plastics, rubber, fibre glans ens.
\rightarrow plastic specially have occupied an Endilspersabie parition in our daily life. They have replaced a number of traditionally used materials.
\rightarrow The present themselves in every water of life. All modern industries like radio, telephone, automobiles, electric motors exc-are basically dependent chon plastics.
\rightarrow plastic is any substance which shows the property of plasticity. plasticity is the property, by virtue of which, a. material undergoes a permanent deformation, when. subjected to heavy and continuous stress or Preenurce.
\rightarrow Therefore, in its bromolest meaning, many materials ike rubber, glass, shellac can be termed an plastic. But now the term plastic has a precise and limited meaning. Properties of plastics :-
\rightarrow plastics are very light in weight.
\rightarrow plastics have low thermal conductivity.
\rightarrow Plastic can be aranspereent, transient or opaque.
\rightarrow platries can be formed and moulded into any shape.
\rightarrow plastics have good sound absorption propericen, yod tervire strength, good reseriance to peeling and good ditmenfioral stability.
\therefore Advantarer of plartics:-1
\rightarrow pherties are available in a wide range of colours of and shades.
\rightarrow planich offered pod. reestutance to attack, by, aspicacids, bases, salts and living organism.

1) Thermosoftening parties:-

There are also caved thermoplattion and are formed by additen, polymerization. These plastics can be softened by heating. reshaped and reused as many times as desired. These are soluble in suitable organic solvents.

The common erg of this plastic are polythene. Polyvinyl, cellulose nitrate exc.
2) Thermosetting plastics:-

This type of plastics are formed by condensation. polymerization. There plastics are cannot be memoulaled and reused. The thermosetting plastics are insoluble in organic savers.

The E-g \rightarrow Bakelite, polyester etc.

THERMOSOFTENING PLASTICS. THERME SETTING PLASTICS
\rightarrow These are formed by polymerization \rightarrow There are formed by polymerization
by addition. by cernderation by addition. by cerderration.
\rightarrow They consists of linear structure \rightarrow They have three dimensional. of long chains with negligible networks of chain, joined by number of creas-links.
\rightarrow The secondary bonds between \rightarrow The bend retain strength upon the chains are very weak hearing. Which donot get broken can be early broken by on applying wean or pressure. heat or pressure.
\rightarrow Hear converts there plastics inter They retain theirs original chape a fluid material. Hence, they can and structure even on heating. So be reshaped and recused. they can nor be reshaped \& reecsied.
\rightarrow They are wholly weak, soft \rightarrow They are strong, hard and and less brittle. more brittle.
\rightarrow Because of weak bonds, they \rightarrow Because of strong bonds, they are soluble in organic are insoluble in organic solvents. solvents.

PVC (polypingt chloride):
\rightarrow It in one of the moss commonly used polymers produced by the polymerization of vinyl cheorciden. It is widely employed in the fabrication of plastics.
\rightarrow PVC is usually available commercially in the form of a white amorephoses powder having a density of about $1.49 \mathrm{~cm}^{-3}$
\rightarrow pVC can be manufactured in expended or cellular fort. I is available in two forms in flexible and in rigid form. it can be easily moulded and extruded into desired shape. The joints are obtained by solvent welding.
\rightarrow This is the cheapest and mont widely wed plastic. Properties of pye :-
\rightarrow It is selcible, strong, tear resistance and yod ageing properer
\rightarrow pro has tendency to decompose when it is heated or exposed to sunlight with time.
\rightarrow It Is resfitance to intact invariably deteriorates with tine
\rightarrow it becomes soft beyond $80^{\circ} \mathrm{C}$. When heated to more than $160^{\circ} \mathrm{C}$, if a it dare disintegrates and give off hydrogen chloride.
\rightarrow Sis electrical properties ave not as good as those, of rubber, but it offers more resistance to oxygen, ozone and sunlight.
\rightarrow It has light weight and resistance to wear. user of PVC:-
\rightarrow It is wed for flooring, wall facing, various extrumions like hand rails, skier boards, pipes, fillets etc.
\rightarrow Ir used for cable jackets, lead-wirte insulation, fabric, coating etC.
\rightarrow It In cred for corrugated roofing sheets, rain water goode.
\rightarrow It is used to manufacture water pipes and it es memories rain coats and shower curtain.
\rightarrow it is used in plastic pressure pipe system for pipelines of water and sewer.

Scanned by CamScanner
\rightarrow It is cued in magnetic strip cards, vinyl siding, window profiles, plumbing and conduit fixtures, gramphone records act. RPVC (rigid polyvinyl chloride):-
The rigid pobyvingt chloride (RPVC) Es also known as Ulaza-plarticized polyvinyl chloride (upve). This matericial Es available in a range of colours and finished including a photo-effect wood finish and is used as a substitude for painted wood.
Properties of RPVe:-
\rightarrow RPVC is more e durable and hared.
\rightarrow it has high termite strength.
\rightarrow It is more rigid and has high resistance to chemical action.
$\rightarrow 97$ Is corterion resurance.
GRP (Glans Reinforced plastic) :-
This is a composite material made of a plastic reinforced by fine glans fibres. This plastic is formed by combining the glass fibres and plastic resins. "The glam fibres are very strong in reryion but weak in compreenion, where as the plastic resins are strong in compreution and weak in stemson.
CPVC (chlorinated polyvinyl chloride): -
\rightarrow CPVC stands for chlorinated polyvinyl chloride. It Is a thermoplastic pipe fitting material made of compounds.
\rightarrow cpve products are specifically used for potable water distribution and corrosive fluid handling indurate exc. It is very cant-effeetive system.

HDP (High Density polyeqnglene):-
\rightarrow It is a thermoplastic polymer produced from monomer ethylene.
\rightarrow It is some times called alkathene or polythene. Properties of HDP:-

$$
\begin{aligned}
& \text { Density }=940 \mathrm{~kg} / \mathrm{m}^{3} \\
& \text { melting point }=130.8^{\circ} \mathrm{C} .
\end{aligned}
$$

uses:-
It is used in house. and plastic mailing envelope. Fibre reinforced polymer :-
\rightarrow It is also called fibre e reinforced plastic.
\rightarrow it is a composite material made up of a polymer matrix reinforced with fire.
\rightarrow The fibres are usually gean, carbon and basalt.
\rightarrow FRP are commonly used in the exrespace, automate marine and construction industries.
\rightarrow It is also wed for strengthening the beam, column and slab of a building and bridge.
Arerfifige timber : -
Properties of artificial timber:-
1). weather resistance :-

It should pomes adequate Resistance against weathering effects such as alternate drying and wetting, alternate heating and cooping because of temperature variations, wide. effects exc.
2) Durability:-

It should be capable of resiting the various action due to fungal insets; chemical, physical and mechanical agencies.
3) Fire Resistance :-

The artificial timber should offer sufficient resistances against fire so that it does not easily ignite. It helps in fire protection in buildings.
4) workability:-

The artificial timber should be easier worksite and should not clog the teeth of saw. ga should also be capable of being easily planned on made smooth.
5) Elasticity:-

This timber should be capable of regaining its original shape when read causing deformation is removed. This property. Is important when it t_{1} should be used fen bows, carriage shafts, sport yoods, wooden beams and wooden floors.
6) Toughness and abrasion :-

It should be capable of offering resistance to stoves due to vibration and should not deteriorate due to mechanical wear.
7) soundinen:-

It ta should have sufficient weight an artificial timber with sufficient weight os considered to be sound and strong.
8) Hardiness is

It should have sufficient wardress, i.e.; resistance penetration. When the oretficial timber is hard. it reatrits the abrasive action as for it is used for flooring, mallets, tool handles, rovers and bearing shaft.

QRerintance to shear: :-
The artificial timber having closely interlocked is very string in shear acres and even along the grains
10) sirengit :-

The artificial timber should be string enough to load, wheather being applied slowly or suddenly. It should rumen enough strength in dimer compression and dreanverse direction.
user of artificial timber :-
\rightarrow The artificial timber es concession resistant, and hence it can be used wheres the corrosion ts likely to occur in the structures.
\rightarrow It in convinient in maintainance and superficial simiercity to wood.
\rightarrow In is used to make various structural members.
\rightarrow It is used in maintainance work.
\rightarrow It is ass used as a coiling proofing material in building construction.
\rightarrow It is wed to make doors and window frames.
\rightarrow It in used for making the planks, square and round shape for furniture.
\rightarrow Demit can be varied in between $0.8-1.2 \mathrm{NN} / \mathrm{m}^{3}$ depending on the requirement.
Types of artificial timber :-
a) veneers
b) Ply woods
c) Particle board
d) Fibre boards
e) Batten boards.
a) veneers :-

There are thin sheet of wood, which arne obtained by slicing timber or by rosary cutting or by peeling of logs of wood. Now a days, rotary putting is mince common as this produces veneer of large size and reduces amount of joining.
\rightarrow However, molt attractive decorate fequrves occur on ... radial face and are obtained by slicing woods like
Teak mahajony, walnut and oar e veneers are novemally cuts from wood at higher molsturve comers and are dried before application of adhesive and arrembly. Then veneers ace premed together wing hot processing method.
\rightarrow veneers are wed in the manufacture of plywood, each veneer being at right angles to the adjacent veneer. So that crop sectional. movement can be restrained, with the aid of modern high strength adhesives. veneers are also used in manufacture of, barren board, pourcicle board.
b) Plywood :-
\rightarrow Plywoods are formed together by quin thin sheet of odd numbers of verleers. The sheets are placed in such a way that, grain in of one layer are at refight angles to the others.
\rightarrow as a result, on application of load on the thees, movement in both the direerion in reduced. The outer: piles are decorative in nature and are called as face piles and the inner ones are called as core or cen borda-band.
c) Particle Board :-
\rightarrow In particles boards; particles on chips are randomly mixed with strong adhesive and are comprened. together under high previse to form a board.
\rightarrow In particie board, the movement is randomly oriented in all directions and restrains is dependent on strength and concentration of adhesive.
\rightarrow particle fa board is much weaker than plywood because; the adhesive joints between the individua chips involve end grains surface. properties of plywood largely involve depend upon wood species used where as, in particle board, it lourgely depends upon the adhesives and particle shape,
\rightarrow If particle of boards are all cubes, the formation of the board will result in sarge portion of joins - involving end grains: thus producing weak boards.
\rightarrow In contact, long thin chips will overisap, rather that butt and will results. Strong boards. With long, and fra chips coarse. To avoid this sometimes beateds are manufactured in throes layers.
d) Fibre -Beard:-
\rightarrow Fibre boards also called as preened woods are rigiel boards manufactured using wood waste like saul dust, small piece of wood, enc!
\rightarrow wood is chipped into small pieces of about 20 mm size, and boiled in water. There wet parclicres are then pared to an outoceave, where it is subjected to stream prenurve of $2300 \mathrm{kN} / \mathrm{m}^{2}$ for about $1 / 2$ minute and there after to a irenurce of $7000 \mathrm{kN} / \mathrm{mt}^{2}$ for new seconds.

Scanned by CamScanner
e) Batten Boards:-
\rightarrow In an these boards, thin veneers are used on faces and are glued to core. veneers may be delores decorative or non-decorative. Grains of veneers are at right angle to these of core:
\rightarrow In batten boards, core conslits of about 8 cm wide wooden strips calved as batters. If the width of strips courted as battens is les than 2.5 cm . It is caused as block board. In laminated boards, widen of core strip is len than 7 mm .
\rightarrow Batten boards and block boards are used for making partitions, packing canes, furniture panelling, ceiling, interior decoration; bus bodies, etc. However are cable to crack on spilt, Laminated beards are stronger than block boards and are not liable to creak or spit.

$$
D-13-01-2020
$$

strength of artificial timber:-
\rightarrow Arereficial timber should be string enough to. withstand the loads weather being applied slowly or suddenly. It should passels enough strength in direction of direct compression and treassvercie direction.

ACOUSTIC MATERIAL :-
Acoustic in the science of sound including its production, trammierion and effeers. Acoustic is a bread field which embraces musics radio, sound reproduction and other fields.

- properties of acoustic material :-
\rightarrow Acoustic material has low reflection and weigh absorption of sound.
\rightarrow It controls the sound and notice levels from machinery and other sources.
\rightarrow It suppresses revioreation echoes and reflection.
\rightarrow It has capacity to capture and 'absorb the sound energy
\rightarrow 94 reduces the sound energy waver.
Types of acoustic material:-
The acoustic material can be bread ty clarified into following 3 groups.
a) Soft material :-

There have sufficiem formusity and are good sound absorbers. Rock wools, gean silk fou in the category.
b) Semi-hard material :-

These are steep enough to stand rough hordiling an arturo serve an building panels. Mineral wool beard, cane fibre are Enclisdeal Under tithes category.
c) Hast material :-

These are hard materifal which have been made porous during manufacture. They also serve as protective. surfaces. The porcous titus of manioning are commonly employed for this purpose.
Acoustic tiles:-
\rightarrow Advantages of such tiles fr that the absorption of Sound If uniform from, tile to tile and lan be easily fined to any of her surface and they are cony but mat suitable for smaller area where acoustical Areentment to be given.
\rightarrow The materials are available in market under different trade names. It is made in factory

1) Acoustic pulp:-

D-20-01-2020
\rightarrow This is mainly composed of asbertes and cettulore fibre mixed with certain binders and preserving cheritals.
\rightarrow This dry fibrous material, on addition of water becomes plastic and can be applied to war and ceiling surfaces to a thickness of unto 2 cm .
\rightarrow The material is applied in layers of 6 mm thickness, in the same manner as plaster. Being plasmic it is easily shaped and finished.
2) Fibrous plaster :-
\rightarrow this type of material is also known as acoustic plaster. It is made by mixing of cement and granular insulation material.
\rightarrow The preparation of cement should be property be maintained so as to become plaster more effective for acoustics.
\rightarrow The acoustic plaster boards are also used and can be fixed on the was. The acoustic plaster should have an absorbent coefficient of 0.30 at
3) Straw board: -
\rightarrow This material can also be used as absorption of 0.30 at 500 cycles per second. These boards are available in 13 mm size.
\rightarrow It is comparatively cheap, thereforie economical.
5) Unfit acoustical plaster: -
\rightarrow This is an inert, feather weight, granular substance manufactured from vermiculite. Gypsum and lime or portland cement is the other constituent.
\rightarrow water is added to. the material to make if plastic for application.
\rightarrow The material is adapted to every type of architectural treatment and is used mainly for interior finesses.
6) Acoustical boards on tiles :-
\rightarrow They are usually made of either comprened cane or wood fibre e or mineral wool.
\rightarrow These boards and tiles have uniform physical and, sound absorption characteristics.
\rightarrow They are prefinished at the factory and can be Painted on coloured to give desirable decorative apperance and light reflection characterectics.
\rightarrow These tiles are very costly as compared to other a cousticar materilaes.
7) Limper asbestos:-
\rightarrow This is asbestos fibre which is applied to a surface by means of a special spray gun.
\rightarrow The asbestos fibres are fed to the hopper if a machine from which the ry are carriecel to a boiler. The dry fibre is then converged in an airt system and then paused swrough a spray gun where e it yeas damp before the final application.

CLADDING
condoling is a tape of skin on extra layer on the outside of a Building, It can be attached to a building framework on an intermediate leven of battens ar spoveren. cladding does not wave to be waterproof, but it often controls how elements his on fac on a surface,

It was usually a hard substance like Cedar wood or stone, or a material rositiant to corrosion like copper bream band bronze. such metals will react with the elements, but they Still protect what's beneath them:

Types of cladding used in construction:-

1) Stone clodoling :-
stone cladding helps create a natural stone look. while bringing in a touch of style and otergance to jour waws. perfect for both interior and exteriens, Stone cladding uses thin layers of natural or faux stone to lend your home a brilliant earthy and rhetic 100 N . Stone cladding panels arr extremely easy to install. virtually maintaingnce freer and graceflilly ares with time
2) Wood cladding :-

It helps create a stunning facade and is a rel way to protect your home from the elements. suitable for both interiors and exteriors, it helps create a wimple distinctive character as nothing beats the look or real wood while blending well with any doctor. Extereion cladding is individually
placed and protects the strenctural integrity of jour house while also enhancing the exterior appearance by soverrl notches. Extremely durable and highly energy efficient owing to its insulation properties, wood cladding helps to make your home a tranquil haven.
3) UPVC cladding:-

It helps add a different dimensions to your home and requires absolutely zero maintainance. This basically translates to no time consuming painting or cumber some repairs. Ideal for both internal and external walls, UPVC cladding, not only suits every kind of home bu also not prone to severe damage by weather elements. Besides being economical, its quite easy to add insulation as well, can be fully customized and comes in a ranore of coloures.
4) Tile cladding :-

A fir fairly new entrant to the cladding world, tile cladding Us an extremely versatile cladding option and comes in the form of a panes or the suited for both exteriors and interiors of your house. Long lasting and easy to maintain, these can transform your house to a contemporary aboole. You can play with either seer modern designs or opt for a natural textured look. Incredibly durable and long lasting, you can even combine tiles that are of different shapes and sizes to give your house a truly unique and suave look. Moreover. there tiles also act as great insulators thus providing to be energy efficient as well.
5) Glans cladding : -

It bels zramform your building exteriors and offer a gansu of customization and design option. Glass always impress and this cladding is available in wide range of tempered, laminated, curved and enameled options while being cost effective and economical. furthermore, glans creates a remarkably modern and contemporary look white offering enormous freedom in shape, design, composition and size, making it optimally suited for modern cladding application.
6) Aluminium composite panel (ACP) :-

This cladding system is made from lightweight aluminium and ts frequently used for eneonely external cladding as el's very rigid ard strong despite its light weight: Moreovert, being aluminium being weather and uV resistant facilities for a bevy,
of customization options including colours, prints, Patterns and shading. Available in varying thickness levers; it enables quick intatrarion while also being versatile enough to be used for fascias, canopies, partitions and even false calling.
7) Ceramic cladding:-

This solutions have been around for ages and been a popular choice for architects around the world for decorative purposes. Being lightweight, it requires very little maintainance while pasmening a superior resistance to chemical and atmospheric evtacks from population, acid rain and snog. It's innovative design and durability also facilitate greater versatility in terms of the size and arrangement.

Scanned by CamScanner
8) porcelain cladding :-
y. Is widely used as a mean for evereral cladding because of its exceptional properties. scratch and abrasion resistant with a surface together than granite or steel, its durable, tough and extremely strong and does not accumulate surface dirt. Additionally its, non-poreous and impervious to chemical white aero being freeze and thermal shock resistant which makes it the ideal material for creating cost-effective, Low-maintainance, hard -wearing surfaces.

$$
D-25-01-2020
$$

Micro silica:-
\rightarrow Micro silica is a light grey cementifious material composed of at least 85% vera fine, amorphous non-cruptaline (glary) spherical silicon dioxide (sion).
\rightarrow It Is arturo caved as silica fume. It is produced as a by-product during the manufacturing of silicon metal or ferresiticion alloys by reduction of high Purity quartz in a sub-merged-arc electric furnance heated to $2000^{\circ} \mathrm{C}$ with coal, coke and wood chips an fuel.
\rightarrow The micro silica, which condemes from the gases escaping from the furmance, has very fine spherical particles having diameter of 0.1 micrometer.
\rightarrow Ferret silicon alloys are produced with nominal silicon cons contents $60 \%-98 \%$. An the silicon content increases in the alloys, the SiO_{2} content inverses in the micro silica.

Properties micro siefea :-
\rightarrow speiffic gravity of micro silica is 2.20 .
\rightarrow Its bulk density varies from $200 \mathrm{ky} / \mathrm{m}^{3}-25^{3} \mathrm{~kg} / \mathrm{m}$ \rightarrow St has minimum surface area of $15,000 \mathrm{~km} / \mathrm{kg}$
\rightarrow The content of SiO_{2} \&n at least 85%.
\rightarrow It jives long term corrosion protection:
uses of micro silica :-
\rightarrow This material has very recently found its application in our country in the nelcleart power plants and bridge construction.
\rightarrow Mice silica have been used extensively in off- shore concrete lactam, high rube mutititoried buildings and various other t Structures demanding high performance in very agyremive environmental condition.

$$
D-27-01-2020
$$

Artificial sand :-
\rightarrow Natureat sands are obtained by the weathering action , abrasion of particles of rocks along with flow of stem. Depending on parent rock, action on particles size and Grading of natural river sand varies from plate to place.
\rightarrow Dams are constructed on upstream of rivers, son now-a-days sands are rot available on decontreeam of dams. At location, grading on sand available may not, contain certain fractions which are required for ideal grading.

- strength, durability of concrete mix depends on size, shape, grading of fine agregate. Since pod quation sand may not be available, crushed sand rs Prooluced. It also helps in protecting ecological balance, by restricting use of natural resources to minimum.
\rightarrow Artificial sand is a specific purpose produced materials which will satisfy the strength, durability, sire, shape, grading requirements of fine aggregate in concrete mix. The stone metal on crushed stone waste, below 25 mm from good parent rock is fed to disintegrator.
Properties of artificial sand:.
\rightarrow The demity of artificial sand lies in between $18 \mathrm{kN} / \mathrm{m}^{3}-25 \mathrm{kN} / \mathrm{m}^{3}$.
\rightarrow It does not contain any organic impurities.
\rightarrow water absorption in care of artificial and is almost negligible.
\rightarrow specific gravity of artificial sand Mes in between $2.65-2.8$.
Advantages of Artificial sand:-
\rightarrow Artificial sand is well graded.
\rightarrow This sand ts having superior surface texture.
\rightarrow It can be compacted properly 10 reduce voids.
\rightarrow Len quantity of cement materials required.
$\rightarrow 9+$ can be produced in required quantity and derired quality.
\rightarrow If economy as large is considered, artificial. sand, many timer proves to be economical.

Scanned by CamScanner

Adhesives:-
\rightarrow Adhesion is attraction between unlike surfaces. consign is attraction between like surfaces. usually due to primary on secondary forces of attraction, adhesives are used to point two or more parts into a unit.
\rightarrow There are advantages of adhesive bonding over methods, of avembly like bolting, riveting, welding etc.
\rightarrow Adhesives join the surfaces in three r lager ways: Specific adhesion if surfaces are joined together by intermolecular fortes of attraction; mechanic adhesion, if the adhesive fire the voids of porous or rough surfaces and hard the surfaces by interlocking action, and fusion of surfaces which are partacley dirrolved in the adhesive on its solvent.
Advantages :-
\rightarrow Corrosion may be prevented between different metals joined by adhesives.
\rightarrow The joints become impermeanere for water and gas.
\rightarrow Adequate strength is produced by wing adhesive.
\rightarrow The adhesive application process is economical, eng and speedy.
\rightarrow Leakage problem of water can be stopped by the application of adheriver.

Disaotvantages:-
\rightarrow Adhesive requires time to attain desired ctrenguk
\rightarrow specific adhesive is required to be used for specific substances.
\rightarrow Adhesives are unstable ar high temperature

1) Animal Protein Glues:-

These tres are e obtained from hide trimmings, bones and frasking by boiling there by hot water Animal Glues provide strong, tough, easily made joints: bu they are affected by damp and most conditions ir ifs supplied in we from of flakes, pearls, sheets, cakes, granules, cubes on Jelly. Animal glues having three grades depending upon the water absorption. i.9. 18, 15, 10 times the dry weight of jove.
use of animal protein grue:-
Thess is wised in the manufacture of ply wood, taminated timber.
2) Blood Albumin Glues:-

It is made by drying braw blood and affected by damp and molest conditions. This glue has good water resistance properties and also efurable.
use of blood ad albumin youer:-
They have good adhosive properties for paper, textile and medals, hence largely wed in food packaging leather dreaming and for wood worsting.

Starch adhesives:-
is is made from vegelables starch having food dry strength but not resistant to mixture. Alkali or acid modifiers are wed to make stanch phase thick and tacky. This pule has porn "resistant but bond quickly to i paper and remtibs. They are cheaper than animal glues. use of starch adhesives:-
\rightarrow This the fy spread and dried easily. \rightarrow They are used in automatic package machines. \rightarrow These ques are assured in manufacture of low shreengith and low water resistance Thyuvad.
Gum arrobic:-
\rightarrow These forms the most useful natural resin adhesive.
\rightarrow It contains mined mineral salt of arobic acid, which is obtained from acacie trees.
\rightarrow ir is wed fort joining paper and wood and in Wish speed porting and roveuting machine. Bonding agent:-
\rightarrow Bonding agents ares natural compound or by nthete material used to entrance the joining of indivien member of a structure without wing mechanical fasteners.
\rightarrow These products are often use in repairers application
such as:- bonding of fresh concrete, spread concrete, fresh mortar ard old concrete.
\rightarrow when bonding agent applied on the old concrete that fine surface of old concrete work should be clown fort proper bonoling.

Prefabrication:-

$$
D \div 28-01-2020
$$

Definition:-
The prefabrication is practice of amembly components of a structure in a factory on other manufacturing side and tramporting complete anembly to the construction site where the structure es to be located.
use of Prop-fabrication:-
\rightarrow The most widoly used form of ppre-fabrication in buitaling and civil Engineering is the we of Pres - fabricated concrete and ire flabricouted concrete steel sections in strucuritas.
\rightarrow Prefabricated steel section reetuces on side cutting and welding colt as well os the anociate hazarolst
\rightarrow Pouting concrete sotions in a factory brings the advantanges of being able to retuse and the Concrete can be mired on the spot without having to be trompported and pumpeol weight on a consulted constructions site.
Disad vantages :-
\rightarrow careful handling of pre-fabricated components such an concrete panned and steel or glam panned es required.
\rightarrow Attention has to be made to the Mrength and concretion resistant of the joining of fabricated Section to avoid failure of the joining.
\rightarrow similarity leaks can be formed ar the joint in fabricated components.
\rightarrow Tramporetation cost may be higher for a given vorume.
Scanned by CamScanner

Pre-fabricated section are required more volume than tow material used in in-sita construction
Principle:-
The main reeron to choore pree-cast contruction metty, over conventional methed :-
\rightarrow Econorry in rarge scale rreopect with high degrue of repitition in work experience.
\rightarrow The sfecial requirement in fintihing.
contral.
\rightarrow fast speed of compruction.
\rightarrow constraintes in availability of site resources. (Labour 8 material).
\rightarrow lange grous of buisding frem the same type of pre-fabricated elements.
Pre-fabrication elements:-
\rightarrow pre-cant colvimn.
\rightarrow ire-cass suas
\rightarrow pre-cast bean
cravitication :-

1) Small ine-fabrication
2) Medium pre-fabrication
\Rightarrow Large ire-fabrication.
4). Cast in site pre-fabrication
3) Factory pre-fabrication.
6). Closed system pre-fabrication.
4) open syntem prue-fabrication
5) Partial pre-fabrication
6) Total pree-fabrication
7) small pre-fabrication:-
\rightarrow The first 3 types are mainly claneffed according to their degree of pre-cast.
\rightarrow timon Elements using in their comaruction for e.g \rightarrow brick is a smarm wit precast and used in building,this is caved a sian fre-fabrication (The degree of precast element is very low).
8) Medium Pre-fabrication:-

Suppose the roofing system and horizontal members are provided with pie-strened element there construction Ene known as medium prefabricated construction. (here the y degree of tre-cart element are moderate)
3) Large pre-fabrication :-

In large prefabrication most of the member like wal pannel roofing or flooring system bean and column are fre-fabricated: (here the degree of Pre-cant element are high).
4) Cant in site prue-fabrication $1 /$ site (factory) prefabriciene
\rightarrow one of the main factor which affect the factory ire-fabrication Es irampora.
\rightarrow The width of pre-fabricated wows are difficult to trampory and vehicles on mode of tramporiation are the factors which prue-fabricution in to be done on side on factory are the factors: which affects cast in site free fabrication:
5) open system prefabrication :-
\rightarrow In the total preffabreicotion system is are carted as single unit and eructed it if te.
\rightarrow The wall fitting and other fixing are done on side. These type of construction is known as
open system fabrication.
6) Closed system prefabrication :-

In the system the whole things are costed with fixings and erected on the partition.
7) partial pre-fabrication:-
\rightarrow In the method of contraction building element (monty horizontal) are required fort pre-fabricat er.
\rightarrow since the costing of horizontal elements (rios, or floor) offer take their time, due to erection of formwork and to get complete strength, so that building is delayed and hence this method is restored.
\rightarrow in mont of the building site this method is popular.
8) Total pre-fabrication :-
\rightarrow very high sled sean be achieved by the wing this method of contraction:
\rightarrow This method can be employed for frame type of connruction or for panned tripe of connruction.
\rightarrow The total pree-fobrication can be done on site or off site.
\Rightarrow The choice of thess 2 method l depend on the situation when the factory produced element are transported and erected at site bs car off site prefabrication.
\rightarrow In this method is to be adopted then we have a very pood reampores of produce to site.
\rightarrow If the elements are cast nearly building site and erected the trampontation of the element can be eliminated but we have to comlder the space avalibility for ertablin such facilities though it is temporary. the
\rightarrow The choice of meshed of construction au so depends on the following:-
a) Type of equipment available for erection \& tran porer
b) Type of structural scheme (Linear element or parent) c) Type of connection between elements.

$$
D-04-02-2020
$$

Q- Write down the materials used in prie-fabrication system. AM- 1) concrete
2) Steel
3) Treated wood
4) Aluminium
5) cellular concrete
6) Light weight concrete Element
7) Ceramic products.

Prefabricated material buidoling use galvanized steed and Gatvalume as the chief materials for building. Galvalume is a form of steel coated with aluminium zinc. This is to probed the building against corruption rust and fire.

It auto provides a study and promotive covering to the prefabricated building. almost all the components of a metal building such as beans, frames columns wal and reefs are e made of steel. Mont fabricated mititary buildings wee steel on aluminum frames. synthetic materials are used for the wows and roofs.

To provide enhanced security a combination of both merial metal and cloth materials are used plastic flooring materials can be quickly arembled and are very durable. priefabricated building materials used for small prefabricated buildings are steel, wood, fibre glass plastic or aluminium materials.

There materials are cheapen tran regular brick and concrete buildings. materials like steel, fibre glans, wood and aluminium are used as prefabricated building materials for sports buildings. These materials provide flexibility and are preferred for making structures and accenories like stands and seats for stadium and gens.

For making low cont houses prefabricated materials like straw, ferry cement contest of a cement matrix reliforsed with a mesh of closely spaced iron rods on wires. in this type of. comtruction the techniques wed are simple and quick using prefabricated material one can make diveable, water and fire resistant and cheap prefabricated buildings. Mont of the preerfabrieated bridling materials are eco-friendly and affordable.

Advantages of prefabrication:-
\rightarrow Moving partial assemblies from a factory of ten coss len than moving pre-preduction resources to each site.
\rightarrow Deploying resources on-site can add costs; prefabricating anemblies can save carts by reducing on-site work.
\rightarrow factory tools - ign, cranes, conveyors, etc., - Can make produciton faster and more grecise.
\rightarrow factory tools - shake tables, hydraulic testers, etc. can offer addled quality arrurance.
\rightarrow consistent indoor environments of factories eliminate mort impacts of weather on production.
\rightarrow cranes and reusable factory supports can allow shapes and sequences without eupenive on-site fare work.
\rightarrow Highen-prectision factory tools can aid more controlled/ movement of building heat and ain, for lower energy comumption and healthier buildings.
\rightarrow Factory production can facilitate more optimal materials usage, recycling, note capture, dust capture ede.
\rightarrow machine-mediated parts movement, and freedom from wind and rain can improve construction safety.

Earthquake Resistance construction:-
Building configuration:-
\rightarrow Building configuration may be defined as the overall size and share of bee building together with nature and location of those element of the building that are significant to its seismic Performance.
\rightarrow Is:1893-2016 has recommended building configuration system in section for the better performance of building during earthquake.
\rightarrow To perform well in earthquake a building shake porrenes four main attributes.
a) Simple and regular configuration.
b) Adequate lateral strength
c) stiffness
d) Ductility
\rightarrow Building having simple and regular geometry and uriforemsy distributed mans and sieffrees in plan as wen as in elevation, suffer much len damage than building with irreregular conflequeration.
\rightarrow A building shall be comider as irregular for the purposes of this standard if areas one of the following condition is applicable.

Definition of irregular building:-
Plan irregularities:-
\rightarrow Torsional Erroegularities
\rightarrow Reentreant corchers
\rightarrow owt-off lane offs in vertical
Vertical irregularities :-
\rightarrow stiffinen irregularity (strop storey).
\rightarrow Man itertegularity.
\rightarrow vertical geometry circorularity.
\rightarrow In plane discontinuing in vertical element resiting lateral force.
\rightarrow strength irregularity
\rightarrow Floating or stub column.
\rightarrow Truegular modes of ascilation in tow principal Plan direction.
Torsional Irregularity :-
A building is said to be torsionally irregular, when
\rightarrow the maximum horizontal displacement of any fluor in the direction of the lateral force at one end of the floor is more than 1.5 times its minimum horizontal displacement at the for end of the same floor in then direction; and
\rightarrow the natural period corccespording to the fundamental taresienal mode of oscillation its more than these of the first two translational moles of oncileation along each principal plan direction.

In forcionalyy irregular building, when the ratio of maximum horizontal displacoment at one end and the minimum horizontal displacement at the other end x.

$$
\Delta_{\max }>1.5 \Delta_{\min }
$$

(plan).
(TURZIONAL IRREGUIRRI Ii)
Re-entrant corners :-
A building is said to have a rep-entrant corner in any plan direction, when ins stricsciural configuration In plan has a projection of size greaten than 15 percent of its erergul plan dimervion in that direction.

In building with re-entrant corners, thesedimemional dynanie analysts method shall be adopted.
Floor slabs having Excenive cut-ouss or openings:openings in slabs result in freruble diaphragm behaviour, and hence the lateral sheen force in not shared by the frames and/or vertical member in proportion to their lateral treamlational stiffinen. The problem is particularly accentuated when the opening is close to the edge of the slab. A building is said to have discontinuity in their in -plane? sieffinen, when floor slobs have cut-outs or opening of area more e than 50% of the fun ara of the floor slab.

In building with discontinuity in their in -pork stiffinen, if the area of the peometric cutout

out -of - plane offsets in vertical Elements:-
out-of-plane offsets in vertical elements resisting lateral loads cause discontinuties and detoures in the load path, which is known to be detrimental to the earthquake safety of the building. A building Is said to have out-of-plane offset in vertical elements, when structural walls or frames are e moved out of plane in any storey along the weight of the building.
Non-parallel Lateral force system:-
Buildings undergo complex earthquake behaviour and hence damage, when they do no i have lateral force resisting systems oriented along two plan directions that are orthogonal to each other. A building is said to have non-parallel system when the vertically- oriented vertically oriented staugural systems resisting lateral forces are not. oriented along the two principal orthogonal, axes in pion.

$$
A_{0}>0.1 \text { Ateral }
$$

oleriiry. Located Along org edge of the slab.
$A_{0}>0.5$ Lineal
 in the stob,

plan
(1)

(RanI)

Types of vertical srenerularixien.

1) Sterfnen arrerpuarity (soft storey)

A soft storey is a stormier whore lateral stiffens Et lens than that the storey above.
2) Mans sreregulariety:.

Mors irregularity shall be considered to exist, when the seismic weight of any floor is more e than 150% of that. of the floors below.
3) Vertical Geometric iresegutarity:-
ot shan be comiderced to Evert, when the horizente dimension of the lateral force revisiting system in any storey is more e than 125 x of the storey below.
A) In -plane ofscontincity in vertical Elements Resisting Lateral force:-
9n-plane discontinuity in vertical elements which are restating lateral force shall be comidered to visit, when in-plane offer of the lateral force resiting elements is greater than 20% of the plan length of there elements.
5) strength irregularity. (weak storey) ir A weak storey is a storey whose lateral strength es len than. shat of the storey above.
6) Floating on stub column:-
such columns are e likely to cause concentreateo damage in the strencturie.
7) Irregular modes of oscitation in Two principal Plan Direction :-
stiffness of beans, column, braces and. structural. walk determine the lateral. sifffres of a building ir each principal plan direction.
Q Describe different building characteristics freon selimbe performance point of view.
$A M \rightarrow$ The seismic weight of the whole building in the. sum of the seismic weights of all. the flora.
\rightarrow Any weight supported in between storeys. shall be distributed to the floors above and below in en inverse proportion to its olisiance from the fevores.
\rightarrow For calculating the design secrmic forces of the structure the imposed load on roof need not be considered:
\rightarrow The selsmic weight of each floors ins its full dead road plus appropriate amount of imposed load,
\rightarrow while computing the selmic weigh, of each floor the weight of collins and wales on any storey shan be
equally distributed to the floors above and below the storey.
\rightarrow The total design seismic bare shear along any principal direction shall be determined by the following. expression.

$$
V_{n}=A H^{w} \quad V_{B}=a_{h} \times w
$$

where, ah $=$ Design horizontal acceleration spectrum value.
Q what is $\quad W=$ seismic weight of the building.
lateral load. resisting system?!
wham- The first step in architectural planing of a building in to select the lateral load resisting system. The load restating system must be of crossed loops, so that it rs able to transfer ar. the forces acting either vercically or horizontal to the ground.

Q Enumerate safety comiderations during additional comaruction and artercration of exiting building.
AM If sufficient Rerprecoutions w.r.i. sa-fory of works are not taken, there are chances of serious accident
\therefore involving heavy len of men and materials. Some of the safety rules to be observed during the erection rocoens of structures are as follow:.
\rightarrow All guys and anchorages should be "closely viewed regularly so as to ascertain their being capacity of lead.
\rightarrow suitable packing pieces must be provided at the requited points so as to avoid the slipping of load,
\rightarrow The chains should not be dropped from a weight,
-but should be lowered gradually.
\rightarrow The equipment and devices employed in the erection procedure should never be over-loaded.
\rightarrow The legs of brother chains should not be opened out to such as angle so as to endanger the stability of the work.
\rightarrow The levers of panel points on the falsework should be maintained as per the desired camber for trews to avoid strain or distraction during assembly.
\rightarrow The rifting devices and mechanisms should be maintained in perfect running order so to avoid their sudden failure without notice.
$\begin{aligned} & \rightarrow \text { The lifting should be carried out smoothly withoud } \\ & \text { sudden shocks. }\end{aligned}$ sudden shocks.
D-03-03-2020

Earthquake resistance in masonary building:-

- Masonry wars are slender because of their small thickness compare to their height and length
\rightarrow A simple way of making these wall behaves ia well in earthquake shaking is by making them act together as a box alonby with the redof and the top and with the foundation at the bottom.
\rightarrow This can be achieved by
a) Ensuring good interlocking of masonry courses at the junction.
b) Employing horizontal bound at various levels, particularly at the openingtel lever. The size of door and window need to be kept sinall.

1) Lintel Band:

During earthquake shaking, the linter band undergoes bending and puling actions. To resect there actions, the construction of lintel band requires special attention. Bands: can be made of wood on of reinforcco concrete (RC) The stresign longans of the bond "must be property conneuteof at the wall corenores. Thess will allow tho band to Support urals loaspeg in their weak direction by walls loaded in thor rations direction. small Lengths of wood spacers or Steel thinks, are used to make the straight Lentic of wood reenters on steel bares act together in wooden bands, proper railing of straight kongith with spacers Es Emportart - Like wore, in Rc bands, aplequat anchoring of steal hinge with steel bars \& nocernary Lintel bond is provided at the lintel level on au internal and external inngetadinal as weld as cram waws except, Partition walls
2) Stile Band: : Sir bond ens provided an sim level for au internal and external longitudinal wales as well as aet crew wars. for fut integrity of walls of concerns in o functions af walls sind effective horizontal bending reifitanl of bands, continuity of reinforcement is eusnilut Scanned by CamScanner

The band should be made of reinforced concrete If grade, not leaner than M15 or reinforced brick work in cement mortar i not leaner than 1:3.
3) plinth Bands:-
plinth band is a band provided at plinth level of wars on top of the foundation ware. This is to be provided where strip footings of masonry are used and the soil es either soft of uneven in its properties, as it frequency happens in hill tracts. This band will serve as damp proof course as well.
4) Roof band:-

Roof band Es a band or flores provided immediately below the roof or floors. In buildings with fores flat reinforced concrete or reinforced brick roofs, rasp bond Is not required because the roof seat also plays the role of a bond. However, in buildings with flat timber or CGI sheet roof, roof band needs to be provided: In buildings with pitched on sloped repose, roof band is very important.
5) Gable Band :-

A gable band is a horizontal member which is placed at the top of the ridge of the sloping slats to surpact the ends of the ref rafters and treansfereing loads to posts or gable end waller.

Scanned by CamScanner

1) Lintel Band $: .$.

During earthquake shaking, the linter band undergoes bending and purring action To resist these actions, the construction of lintel band requires special attention Bands can be made of wood on of reinforces concrete (RC) . The straight lengths of the band must be properly conneuted at the was corners. This wile allow tho band to support walls loaded in thein weak direction by waws loaded in their string direction. Small lengths of wood spacers or steel rinks are. used to make the straight length of wood runners on steel bares act together on wooden bands, proper mailing of straight lengths with spaces Es important Likewtare, in RC bands, adeguas anchoring of steel links with steed bars is nocevary. Lintel band is provided at the lintel Level on as internal and external longitudinal as well as crop walls except, partition wets
2) Still Band:=,
sill band is provided at si μ Level for an internal and external longitudinal was as well as crees wales. For fees integrity of was at concerns and junctions of wars and effective horizontal bending relinat of bands, continuity of reinforcement is enotial

The band should be made of reinforced concrete of grade, not leaner than M15 or reinforced brick work in cement mortar not leaner than 1:3.
3) plinth Bands:-
plinth band is a band provided at plinth level of wars on top of the foundation woul. This soft on uneven in its properties, as it frequens happens in hill tracks. This band will serve as damp proof course as well.
4) Roof band:-

Roof band is a band ort-foora provided immediately below the roof or floors. In buildings with floors flat reinforced concrete or reinforced brick roods, reap band Is not required because the roof sears also plays the role of a band. However, in buildings with flat timber or CGI Sheet roof, roof band needs to be provided. In buildings with pitched or sloped roof, roes band ts very important.
5) Gable Band :-

A gable band is a horizontal member which es placeol at the top of the ridge of the sloping slab to supper the ends of the rafters and transferring loads to posts or gable end walls.

Scanned by CamScanner

Ch $\rightarrow 04$ RETROFITTING OF STRUCTURES

1) What are the sources of weakness in RCC framed building?
AM- source of weakness in RCC frame building:. Earthquake engineering is not a pure science Nether it has been developed through the observation of failure of structure during earthquake. Damage survey reforms of past earthquakes reveal the following main sourer If weakness in reinforced concrete moment resisting frame building.
\rightarrow discontinuous lead path .
\rightarrow Lack of deformation compatibility of structural members.
$\begin{aligned} \rightarrow & \text { orality of workmankiep and poor quality of } \\ & \text { materials. }\end{aligned}$
i) Structural Damage due to Discontinuities Loud path:Every structure must have two load resisting system:-
a) vertical load resiting system for tranfering the vertical load to the ground and
b) Horizontal bad reelecting system for toanfeiring the horizontal lad of the-vercrical lead system.

It is imperative that the seismic forces should be property collected by the horizontal framing system and property transferred into vorrical lateral resurí, system. Any discontinuity in this load path or exod transfer may cause one of the major contributions structural damage during strong earthquake.
(i) structural Damage due to lack of Deformation.:
\rightarrow The main problems in the structural members of moment reverting frame building are e the Limited amount of ductility and the inability to redistribute load in order to safety with stand the deformations imposed upon in response to seismic load.
\rightarrow The regions of failure may be in columns beans walls and beam column joints.
$\rightarrow 9+$ Rs imporesant to consider the consequences for member failure of structural ferfformanico.
\rightarrow modequate strength and ductility of the structural member can and will result in local or complete failure of the system.
ti) Quality af workability and materials :-
\rightarrow There are numerous instances where faculty construction practices and back of quality control have as contributed to the damage!
\rightarrow The faculty construction practices may be like, lack of amount and defiling of reinforcement as per requirement of code particularity when the end of lateral reinforcoren Is not bent by 135 degrees as the code specified.
\rightarrow many buildings, wave been damaged due to poor. quality control of design material strength as specified, spatting of concrete by the corrasion of embedded reinforcing bars, porous concrete, age of concrete, proper maintenance etc.
2) clauifig retrofitting' techniques and dercrubse their user.
AM:-
Retrofitting:damaged or unotamaged structution.
$\rightarrow r+x$ an improvement over the original strength when the evaluation of the building
indicates that the strength In available
before the before the damage reruN insufficient and restortection alone will not be adequate in future quaterearth quakes. objectives of retrofitting:-
\rightarrow Increasing "She' strongish (lateral) in wall, or both direction by reinforticinent on by increasing wall argos or the no. of wares and coluchm. \rightarrow Giving unity to the structures by providing

 buttremes
\Rightarrow Wall thickeners
\leftrightarrow Man reduction Techniques

$\rightarrow \begin{aligned} & \text { Supplemental damping } \\ & \text { ard bare ciolation }\end{aligned}$

There are 2 way to enhance the solsmic capacity
of eviliting structures.

1) The firth es a structural -level approach of retrofitting which involves global modifications to the structural system. retrofitting or which deals with an increase of the ductility of components with aoferpate capacities to saritafy their specific remit state.

Adding New Shear walls :-
one of the moNt common methods io increase the lateral strength of the f.C. building l. If Is the lat t single metrool. Limitation:-
Increase in lateral resistance but it concentrated er a few places.
\rightarrow increase dead load of the strencture.

Adpling stael bracing:-
Higher strengths striffines can be proved. opening for natural ingot can be made easily. It have much en out.
Limitation:.
A moderate to high level of skilled labour is necenary.
\rightarrow Lack of information about the seismic behaviour of the added bracing.
\rightarrow undesirable changer takes place.

Adding Infill war:-
It Is an effectives economical method for improving strengths reofucing drift of exerting frames. Limitation:-
\rightarrow some columns in the frame are subjected to large axial termite forces, which may exceed the capacity.
\rightarrow A string masonry in fill may result in a failure of the columns of evtiting frame

Local ar member Retrofitting:-
Local retrofitting are typically used either when therrafit the retrofit obseretives are e limited on direct treatment of the vulnearble components is needed.
\rightarrow The meat popular frequently used method in local retrofitting is racketing or confinement by the jacket of R.c. stere, fibre reinforces Polymer (FRP) carbon fibre ac,
\rightarrow jackering around the existing, members increases th s lateral lead capacity of the structure in a uniformly distributed way with a minimal increase of boosting in neg g arming single foundation with no alternative in the boric geometry of the building Tackesing :-
\rightarrow jacketing is the most popularly wed materials for strengthening of building.
\rightarrow The mat common types are steel jacket, \&.c., socket, fibre reinforced polymer composite jacket, Tacket with high ternion materials like carton fibre.
glans fibre ere.
Purpose:-
\rightarrow To increase concrete confinement by tromverue fibre/reinforcement, especially for circular crom-sectional columm..
\rightarrow To increase shear sarength by fransverue reinforcement.
\rightarrow To increare flemural sarength by rongitudinal fibre.

F.R.P gacketing:-
\rightarrow earbon fibrie is feexible and can be made to contack the surface Aightly for a niog. tegree of confinement.
\rightarrow confinement is of hign eqegreee coz carcon fibre is of hogh smength and high modutus of elarticity.
\rightarrow It has right weignt 8 ruuting does not arciuse.

PART-C

5.BUILDING SERVICES

Direct System of Cold Water Supply

For efficient operation, a high pressure water supply is essential particularly at periods of peak demand. Pipework is minimal and the storage cistern supplying the hot water cylinder need only have 115 litres capacity. The cistern may be located within the airing cupboard or be combined with the hot water cylinder. Drinking water is available at every draw-off point and maintenance valves should be fitted to isolate each section of pipework. With every outlet supplied from the main. the possibility of back siphonage must be considered.
Back siphonage can occur when there is a high demand on the main. Negative pressure can then draw water back into the main from a submerged inlet. e.g. a rubber tube attached to a tap or a shower fitting without a check valve facility left lying in dirty bath water.

Notes:

(1) Servicing valves to be provided on supply pipes to storage and flushing cisterns.
(2) Copper tube pipe sizes shown.

Ret.: The Water Supply (Water Fitings) Regutations 1999.

Indirect System of Cold Water Supply

The indirect system of cold water supply has only one drinking water outlet. at the sink. The cold water storage cistern has a minimum capacity of 230 litres, for location in the roof space. In addition to its normal supply function. it provides an adequate emergency storage in the event of water main failure. The system requires more pipework than the direct system and is therefore more expensive to install. but aniform pressure occurs at all cistern-supplied outlets. The water authorities prefer this system as it imposes less demand on the main. Also. with fewer fittings attached to the main. there is less chance of back siphonage. Other advantages of lower pressure include less noise and wear on fittings, and the opportunity to install a balanced pressure shower from the cistern.

Notes:
(1) Servicing valves to be providod on supply pipes to storage and flushing cisterns.
(2) Copper tube pipe sizes shown.

Ref.: The Water Supply (Waior Fitings) Regulations 1999.

For medium and high rise buildings. there is often insufficient mains pressure to supply water directly to the upper floors. Boosting by pump from a break tank is therefore usually necessary and several more of these tanks may be required as the building rises. depending on the pump capacity. A break pressure cistern is also required on the down service to limit the head or pressure on the lower fittings to a maximum of 30 m (approx. 300 kPa). The drinking water header pipe or storage vessel supplies drinking water to the upper floors. As this empties and the water reaches a predetermined low level, the pipeline switch engages the duty pump. A float switch in the break tank protects the pumps from dry running if there is an interruption to mains supply. The various pipe sections are fitted with isolating valves to facilitate maintenance and repairs.

As an alternative to the drinking woter header pipe, an autopneumatic cylinder may be used. Compressed air in the cylinder forces water up to the float valves and drinking water outlets on the upper floors. As the cylinder empties a low pressure switch engages the duty pump. When the pump has replenished the cylinder, a high pressure switch disengages the pump. In time. some air is absorbed by the water. As this occurs, a float switch detects the high water level in the cylinder and activates an air compressor to regulate the correct volume of air. Break pressure cisterns may be supplied either from the storage cisterns at roof level or from the rising nain. A pressure reducing valve is sometimes used instead of a break pressure cistern.

The hot water from the boiler mixes directly with the water in the cylinder. If used in a 'soft' water area the boiler must be rustproofed. This system is not suited to 'hard' waters. typical of those extracted from boreholes into chalk or limestone strata. When heated the calcium precipitates to line the boiler and primary pipework. eventually 'furring up' the system to render it ineffective and dangerous. The storage cylinder and associated pipework should be well insulated to reduce energy losses. If a towel rail is fitted. this may be supplied from the primary flow and return pipes.

Note: All pipe sizes shown are for copper outside diameter.

This system is used in 'hard' water areas to prevent scaling or 'furring' of the boiler and primary pipework. Unlike the direct system. water in the boiler and primary circuit is not drawn off through the taps. The same water circulates continuously throughout the boiler, primary circuit and heat exchange coil inside the storage cylinder. Fresh water cannot gain access to the higher temperature areas where precipitation of calcium would occur. The system is also used in combination with central heating. with flow and return pipes to radiators connected to the boiler. Boiler water temperature may be set by thermostat at about $80^{\circ} \mathrm{C}$.

* A safety valve is not normally required on indirect open vent systems, as in the unlikely occurrence of the primary flow and vent becoming obstructed, water expansion would be accommodated up the cold feed pipe.

For larger buildings a secondary circuit will be required to reduce 'dead-legs' and to maintain an effective supply of hot water at all outlets. Convection or thermo-siphonage may provide circulation, but for a more efficient service a circulatory pump will be necessary. In buildings which are occupied for only part of the day. e.g. schools. offices. etc.. a time contral or programmer can be used to regulate use of the pump. Also. one of the valves near the pump should be motorised and automatically shut off with the pump and boiler when hot water is not required. All secondary circuits should be well insulated to reduce heat losses through the pipework. A heating installation can operate in conjunction with this system. but may require duplication of boilers or separate boilers for each function.

Hot water provision in moderately large buildings such as spacious houses. small hotels, hostels and other situations where demand is periodically high. can be from a large storage cylinder or cylinders installed in duplicate. Alternatively or additionally, depending on requirements, a supplementary storage vessel may be strategically located at high level. This vessel is relatively small, containing no more than 20% of the total design capacity.

Advantages over a single storage facility:

- Smaller secondary flow and return distribution pipes.
- Less concentrated dead load on the structure.

The single stack system was developed by the Building Research Establishment during the 1960s, as a means of simplifying the extensive pipewark previously associated with above ground drainage. The concept is to group appliances arosind the stack with a separate branch pipe serving each. Branch pipe lengths and falls are constrained. Initially the system was limited to five storeys, but applications have proved successful in high rise buildings of over 20 storeys. Branch vent pipes are not required unless the system is modified. Lengths and falls of waste pipes are carefully selected to prevent loss of trap water seals. Water seals on the waste traps must be 75 mm (50 mm bath and shower).

Branch pipe slope or fall:
Sink and bath 18 to $90 \mathrm{~mm} / \mathrm{m}$
Basin and bidet 20 to $120 \mathrm{~mm} / \mathrm{m}$ $W C-9 \mathrm{~mm} / \mathrm{m}$.

The stack shou'd be vertical below the highest sanitary appliance branch. If an offset is unavoidable. there should be no connection within 750 mm of the offset.

The branch bath waste connection must be at least 200 mm below the centre of the WC branch to avoid crossflow. This may require a 50 mm nom. dia. parallel pipe to offset the bath waste pipe, or an 'S' trap WC to offset its connection.

The vent part of the stack may reduce to 75 mm nom. dia. when it is above the highest branch.

Single Stack System - Modified

If it is impractical to satisfy all the requirements for waste pipe branches in a standard single stack system. some modification is permitted in order to maintain an acceptable system performance:

- Appliances may be fitted with resealing or anti-siphon traps (see page 309).
- Branch waste pipes can be ventilated (see pages 314 and 315).
- Larger than standard diameter waste pipes may be fitted.

All pipe sizes nominal diameter

Note: Where larger than standard branch pipes are used. the trap size remains as standard. Each trap is fitted with a 50 mm tail extension before connecting to a larger waste pipe.

Refs: Building Regulations. Approved Document H1, Section 1:-Sanitary pipework.
BS EN 12056: Gravity drainage systems inside buildings (in 6 ports).

The collar boss system is another modification to the standard single stack system. It was developed by the Marley company for use with their UPVC pipe products. The collar is in effect a gallery with purpose-made bosses for connection of waste pipes to the discharge stack without the problem of crossflow interference. This simplifies the bath waste connection and is less structurally disruptive.

Small diameter loop vent pipes on (or close to) the basin and sink traps also connect to the collar. These allow the use of ' S ' traps and vertical waste pipes without the possibility of siphonage, even when the bath waste discharges and flows into the combined bath and basin waste pipe.
Vertical outlets are also likely to be less obtrusive and less exposed than higher level ' P ' trap waste pipes.

If the branch waste pipes are kept to minimal lengths. the loop vents may not be required. However, the system must be shown to perform adequately under test without the loss of trap water seals.

All pipe sizes shown are nominal inside diameter. There may be some slight variation between different product manufacturers. particularly those using outside diameter specifications. Note that there is not always compatibility between different manufacturers: components.

Modified Single Stack System

The ventilated stack system is used in buildings where close grouping of sanitary appliances occurs - typical of lavatories in commercial premises. The appliances need to be sufficiently close together and limited in number not to be individually vented.

Requirements:
WCs:
8 maximum
100 mm branch pipe 15 m maximum length
Gradient between 9 and $90 \mathrm{~mm} / \mathrm{m}$ ($0=90 \frac{1}{2}^{\circ}-95^{\circ}$).

Basins:
4 maximum
50 mm pipe
4 m maximum length
Gradient between 18 and $45 \mathrm{~mm} / \mathrm{m}$ $\left(0=91^{\circ}-92 \frac{1}{2}^{\circ}\right)$.

Urinals (bowls):
5 maximum
50 mm pipe
Branch pipe as short as possible
Gradient between 18 and $90 \mathrm{~mm} / \mathrm{m}$.

Urinals (stalls):
7 maximum
65 mm pipe
Branch pipe as for bowls.

All pipe sizes are nominal inside diameter.

Vent pipe connected to base of stack to prevent back pressure on the ground floor appliances

The fully vented one-pipe system is used in buildings where there are a large number of sanitary appliances in ranges. e.g. factories. schools, offices and hospitals.

The trap on each appliance is fitted with an anti-siphon or vent pipe. This must be connected within 300 mm of the crown of the trap.

Individual vent pipes combine in a common vent for the range. which is inclined until it meets the vertical vent stack. This vent stack may be carried to outside air or it may connect to the discharge stack at a point above the spillover level of the highest appliance.

The base of the vent stack should be connected to the discharge stack close to the bottom rest bend to relieve any compression at this point.

Size of branch and stack vents:

Discharge pipe or stack (D) (mm)	Vent pipe (mm)
<75	0.670
$75-100$	50
>100	0.500

All pipe sizes are nominal inside diameter.

The Two-pipe System
This system was devised to comply with the old London County Council requirements for connection of soil (WC and urinal) and waste (basin. bath. bidet. sink) appliances to separate stacks. For modern systems the terms soil and waste pipes are generally replaced by the preferred terminology, discharge pipes and discharge stacks.

There are many examples of the two-pipe system in use. Although relatively expensive to install. it is still permissible and may be retained in existing buildings that are the subject of refurbishment.

It may also be used where the sanitary appliances are widely spaced or remote and a separate waste stack is the only viable method for connecting these to the drain.

A variation typical of 1930 s dwellings has first floor bath and basin wastes discharging through the wall into a hopper. The waste stack from this and the ground floor sink waste discharge over a gully.

A gully may be used as an alternotive to a rest bend before the drain.

Lowest discharge pipe connection to stack:
Up to three storeys -450 mm min. from stack base (page 311). Up to five storeys -750 mm min . from stack base (page 314).

Above five storeys. the ground floor appliances should not connect into the common stack, as pressure fluctuations at the stack base could disturb the lower appliance trap water seals. Above 20 storeys, both ground and first floor appliances should not connect into the common stack. Ground and first floor appliances so affected can connect directly to a drain or gully, or be provided with a stack specifically for lower level use.

Access - required for clearing blockages. Rodding points should be fitted at the end of discharge pipes, unless trap removal provides access to the fux pipe length. Discharge stacks are accessed from the top and through access plates located midway between floors at a maximum spacing of three storeys apart.

Armoured cable is used for mains and sub-mains. The cable is laid below ground level, breaking the surface where it enters sub-stations or transformers and other buildings. High voltage cable is protected below ground by precast concrete 'tiles'.

Conduit for electrical services is produced in steel (galvanised or painted black) or plastic tube into which insulated cables are drawn. The conduit protects the cable from physical damage and heat. It also provides continuous support and if it is metal. it may be used as an earth conductor. Standard outside diameters are 20. 25, 32 and 40 mm . Steel is produced in either light or heavy gauge. Light gauge is connected by grip fittings. whilst the thicker walled heavy gauge can be screw threaded to fittings and couplings. Plastic conduit has push-fit connections.

(a) Grip coupling

Steel conduit protected inside

Fittings for steel conduit

(b) Elbow
 -

Mineral insulated copper covered cable (MICC) has copper conductors insulated with highly compressed magnesium oxide powder inside a copper tube. When installing the cable, it is essential that the hygroscopic insulant does not come into contact with a damp atmosphere. Cutting the cable involves special procedures which are used to seal the insulant from penetration of atmospheric dampness. The cable provides an excellent earth conductor: it is also resistant to most corrosive atmospheres and is unaffected by extremes of heat.

Exploded view of termination joint for mineral insulated copper covered cable

PVC and rubber insulated cables are relatively inexpensive and simple to install. requiring clipped support at regular intervals. PVC cables are in general use. but they have a temperature limitation between $0^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$. Below zero they become brittle and are easily damaged and at the higher temperature they become soft. which could encourage the conductor to migrate through the PVC. Outside of these temperatures. the cable must be protected or an appropriate rubber insulant specified. Cables usually contain one. two or three conductors. In three-core cable the tive and neutral are insulated with brown and blue colour coding respectively. The earth is bare and must be protected with green and yellow sleeving where exposed at junction boxes. sockets. etc. Grey and black insulated conductors are occasionally used where an additional facility is required. e.g. two-way lighting.

PVC or rubber insulated cable

Core arrangements of mineral insulated coppor covered cables

Refs: BS 6004 Electric cables. PVC insulated. non-armoured cables for voltages up to and including $450 / 750 \mathrm{~V}$. for electric power, lighting and internal wiring. BS 6007: Electric cables. Single core unsheathed heat resisting cables for voltages up to and including $450 / 750 \mathrm{~V}$. for internal wiring.

Testing Completed Installation - 1

Electrical installations must be tested on completion to verify that the system will operate efficiently and safely. The tests are extensive, as defined in the Institution of Electrical Engineers Regulations. They can only be carried out by a competent person. i.e. a qualified electrician or electrical engineer. The following tests are an essential part of the proceedings:

- Continuity.
- Insulation.
- Polarity.

Testing is undertaken by visual inspection and the use of a multipurpose meter (multimeter) or an instrument specifically for recording resistance, i.e. on ohmmeter.

Continuity - there are several types of continuity test for ring mains. Each is to ensure integrity of the live, neutral and earth conductors without bridging (shorting out) of connections. The following is one established test to be applied to each conductor:

- Record the resistance between the ends of the ring circuit (A).
- Record the resistance between closed ends of the circuit and a point mid-way in the circuit (B).
- Check the resistance of the test lead (C).
- Circuit integrity is indicated by: $\mathrm{A} \div 4$ approx. $=\mathrm{B}-\mathrm{C}$.

Insulation - this test is to ensure that there is a high resistance between live and neutral conductors and these conductors and earth. A low resistance will result in current leakage and energy waste which could deteriorate the insulation and be a potential fire hazard. The test to earth requires all lamps and other equipment to be disconnected. all switches and circuit breakers closed and fuses left in. Ohmmeter readings should be at least $1 \mathrm{M} \Omega$

Polarity - this is to ensure that all switches and circuit breakers are connected in the phase or live conductor. An inadvertant connection of switchgear to a neutral conductor would lead to a very dangerous situation where apparent isolation of equipment would still leave it live! The test leads connect the live bor in the disconnected consumer unit to live terminals at switches. A very low resistance reading indicates the polarity is correct and operation of the switches will give a fluctuation on the ohmmeter.

Ref: BS EN 61010-1: Safety requirements for electrical equipment for measurement. control and laboratory use.

For large developments containing several buildings. either radial or ring distribution systems may be used.

Radial system - separate underground cables are laid from the substation to each building. The system uses more cable than the ring system. but only one fused switch is required below the distribution boards in each building.

Ring circuit system - an underground cable is laid from the substation to loop in to each building. To isolate the supply, two fused switches are required below the distribution boards in each building. Current flows in both directions from the intake. to provide a better balance than the radial system. If the cable on the ring is damaged at any point. it can be isolated for repair without loss of supply to any of the buildings.

Earthing Systems - 1

Supply systems require a safety electrical earthing facility. The manner in which this is effected will depend on whether the supply is overhead or underground and the conductive property of the ground surrounding the installation. Systems are classified in accordance with a letter coding:

First letter - type of earthing:
T - at least one point of the supply is directly earthed.
I - the supply is not directly earthed, but connected to earth through a current limiting impedance. Not acceptable for public supplies in the UK.

Second letter - installation earthing arrangement:
T - all exposed conductive metalwork is directly earthed.
N - all exposed conductive metalwork is connected to an earth provided by the supply company.

Third and fourth letters - earth conductor arrangement:
S - earth and neutral conductors separate.
C - earth and neutral conductors combined.
Common supply and earthing arrangements are:
TT (shown below).
TN-S and TN-C-S (shown next page).
TT system:
Most used in rural areas where the supply is overhead. An earth terminal and electrode is provided on site by the consumer. As an extra safety feature, a residual current device (RCD). generally known as a trip switch, is located between the meter and consumer unit. The RCD in this situation should be of the time delayed type - see page 398.

TN-S system - this is widely used in the UK. with the electricity supply company providing an earth terminal with the intake cable. This is usually the metal sheathing around the cable, otherwise known as the supply protective conductor. It connects back to the star point at the area transformer. where it is effectively earthed.

TN-C-S system - this is as the TN-S system, but a common conductor is used for neutral and earth supply. The supply is therefore TN.C. but with a separated neutral and earth in the consumer's installation it becomes TN-C-S. This system is also known as protective multiple earth (PME). The advantage is that a fault to earth is also a fault to neutral. which creates a high fault current. This will operate the overload protection (fuse or circuit breaker) rapidly.

Fuses or mcbs

TN-S system

TN-C-S system

Note: Specification of installation cable between supply company's sealing chamber and consumer's unit - phase/live and neutral $25 \mathrm{~mm}^{2}$. earth $10 \mathrm{~mm}^{2}$ crass-sectional area.

Pages 380, 381 and 385 show that the consumer's earth conductor is connected to the neutral and earthed at the local transformer. For below ground supplies this arrangement provides a path of low resistance for an electrical foult. With an overhead supply typical of rural areas. individual consumers must provide a suitable earth terminal or electrode as shown on page 384.

Uniess wet. the ground surface is not usually a very good conductor. therefore ground contact is made at about 1.5 to 2 m below the surface. In the past this was achieved by earth bonding to metal water and gas mains. Since the introduction of plastic pipe materials. this is of course no longer acceptable. Current practices include burying a metal plate or a metal tape mesh arranged over several square metres, or driving a metal rod electrode into the ground. The latter is normally odequate for domestic and other small-scale installations. In some instances. the electrode is housed as shown below. Whatever earth method used. a low resistance to an electrical fault is essential. The IEE Wiring Regulations recommend that the earth electrode resistance should not exceed 200 ohms.

The Institution of Electrical Engineers (IEE) Wiring Regulations require the metal sheaths and armour of all cables operating at low and medium voltage to be cross-bonded to ensure the same potential as the electrical installation. This includes all metal trunking and ducts for the conveyance and support of electrical services and any other bare earth continuity conductors and metalwork used in conjunction with electrical appliances. The bonding of the services shall be as close as possible to the point of entry of the services into a building. Other fixed metalwork shall be supplementary earth bonded.

Light and Light Sources - 1

Light is a form of electromagnetic radiation. It is similar in nature and behaviour to radio waves at one end of the frequency spectrum and X-rays at the other. Light is reflected from a polished (specular) surface at the same angle that strikes it. A matt surface reflects in a number of directions and a semi-matt surface responds somewhere between a polished and a matt surface.

Angle of incidence θ_{1} Angle of reflection θ_{2}

Light reflected from a polished surface

Light is scatsered in all directions (diffusion)
Light passing through a diffusing screen

Light is rellected in all directions

Light reflected from a matt surface

Light is bent or refracted when passing through a surface between two media

Some light is scattered and some light in refliected directionally

Light scattered and reflected from a semi-matt surface

Intensity of light and lux

Illumination produced from a light source perpendicular to the surface:

$$
E=1 \div d^{2}
$$

$E=$ illumination on surface (lux)
I = Illumination intensity from source (cd)
$d=$ distance from light source to surface (m).

$$
E=\frac{l \cos \theta}{d^{2}}
$$

 from a light source not perpendicular to the surface

Definitions and units of measurement:

- Luminous intensity - candela (cd). a measurement of the magnitude of luminance or light reflected from a surface, i.e. $\mathrm{cd} / \mathrm{m}^{2}$.
- Luminous flux - Iumen (Im), a measurement of the visible light energy emitted.
- Illuminance - Lumens per square metre ($\mathrm{lm} / \mathrm{m}^{2}$) or lux (lx). a measure of the light falling on a surface.
- Efficacy - efficiency of lamps in lumens per watt (Im/W). Luminous efficacy $=$ Luminous flux output \div Electrical power input.
- Glare index - a numerical comparison ranging from about 10 for shaded light to about 30 for an expased lamp. Calculated by considering the light source size. location. luminances and effect of its surroundings.

Examples of illumination levels and limiting glare indices for different activities:

Activity/location	Hluminance (lux)	Limiting glare index
(fine)	250	25
Assembly work: (general)	1000	22
Computer room	300	16
House	50 to 300^{*}	n / a
Laboratory	500	16
Lecture/classroom	300	16
Offices: (general)	500	19
\quad (drawing)	750	16
Public house bar	150	22
Shops/supermarkets	500	22
Restaurant	100	22

- Varies from 50 in bedrooms to 300 in kitchen and study.

The Building Requlations. Approved Document L2 requires that nondomestic buildings have reasonably efficient lighting systems and make use of daylight where appropriate.

Ventilation - a means of changing the air in an enclosed space to:

- Provide fresh air for respiration - approx. 0.1 to $0.2 \mathrm{t} / \mathrm{s}$ per person.
- Preserve the correct level of oxygen in the air - approx. $\mathbf{2 1 \%}$.
- Control carbon dioxide content to no more than 0.1\%. Concentrations above 2% are unacceptable as carbon dioxide is poisonous to humans and can be fatal.
- Control moisture - relative humidity of 30% to 70% is acceptable.
- Remove excess heat from machinery, people. lighting. etc.
- Dispose of odours, smoke, dust and other atmospheric contaminants.
- Relieve stagnation and provide a sense of freshness - air movement of 0.15 to $0.5 \mathrm{~m} / \mathrm{s}$ is adequate.

Measures for control:

Health and Safety at Work, etc. Act.
The Factories Act.
Offices. Shops and Railway Premises Act.
Building Regulations. Approved Document F - Ventilation.
BS 5925: Code of practice for ventilation principles and designing for natural ventilation.

The statutes provide the Health and Salety Executive with authority to ensure buildings have suitably controlled internal environments. The Building Regulations and the British Standard provide measures for application.

Requirements for an acceptable amount of fresh air supply in buildings will vary depending on the nature of occupation and activity. As a guide, between $10 \mathrm{l} / \mathrm{s}$ of outdoor air supply per person can be applied between the extremes of a non-smoking environment. to an extract air rate of $36 \mathrm{l} / \mathrm{s}$ per person in a room dedicated specifically for smokers. Converting this to $\mathrm{m}^{3} / \mathrm{h}$ (divide by 1000. multiply by 3600). equates to 36 to $130 \mathrm{~m}^{3} / \mathrm{h}$ per person.

Air changes per hour or ventilation rate is the preferred criteria for system design. This is calculated by dividing the quantity of air by the room volume and multiplying by the occupancy.
E.g. $50 \mathrm{~m}^{3} / \mathrm{h} .100 \mathrm{~m}^{3}$ office for five persons: $50 / 100 \times 5=2.5 \mathrm{a} / \mathrm{c}$ per h .

Natural ventilation is an economic means of providing air changes in a building. It uses components integral with construction such as air bricks and louvres. or openable windows. The sources for natural ventilation are wind effect/pressure and stack effect/pressure.
Stack effect is an application of convected air currents. Cool air is encouraged to enter a building ot low level. Here it is warmed by the occupancy, lighting. machinery and/or purposely located heat emitters. A column of warm air rises within the building to discharge through vents at high level. as shown on the following page. This can be very effective in tall office-type buildings and shopping malls. but has limited effect during the summer months due to warm external temperatures. A temperature differential of at least 10 K is needed to effect movement of air, therefore a supplementary system of mechanical air movement should be considered for use during the warmer seasons.

Wind pressure diagram for rools with pitches up to 30°

The rates of air change are determined by the building purpose and occupancy, and local interpretation of public health legislation. Public buildings usually require a ventilation rate of $30 \mathrm{~m}^{3}$ per person per hour.

Wind passing the walls of a building creates a slight vacuum. With provision of controlled openings this can be used to draw air from a room to effect air changes. In tall buildings, during the winter months. the cool more dense outside air will tend to displace the warmer lighter inside air through windows or louvres on the upper floors. This is known as stack effect. It must be regulated otherwise it can produce draughts at low levels and excessive warmth on the upper floors.

Ventilation and heating for an assembly hall or similar building may be achieved by admitting cool external air through low level convectors. The warmed air rises to high level extract ducts. The cool air intake is regulated through dampers integral with the convectors.

PSV consists of vertical or near vertical ducts of 100 to 150 mm diameter, extending from grilles set at ceiling level to terminals above the ridge of a roof. Systems can be applied to kitchens. bathrooms. utility rooms and sometimes sanitary accommodation, in buildings up to four storeys requiring up to three stacks/ducts. More complex situations are better ventilated by a Mechanical Assisted Ventilation System (MAVS). see next page.
PSV is energy efficient and environmentally friendly with no running costs. It works by combining stack effect with air movement and wind passing over the roof. It is self-regulating, responding to a temperature differential when internal and external temperatures vary.

PSV to a dwelling house

Ref.: Building Regulations. Approved Document F1.

MAVS may be applied to dwellings and commercial premises where PSV is considered inadequate or impractical. This may be because the number of individual ducts would be excessive. i.e. too space consuming and obtrusive with several roof terminals. A low powered (40 W) silent running fan is normally located within the roof structure. It runs continuously and may be boosted by manual control when the level of cooking or bathing activity increases. Humidity sensors can also be used to automatically increase air flow.

MAVS are acceptable to Approved Document F1 of the Building Regulations as an alternative to the use of mechanical fans in each room. However, both PSV and MAVS are subject to the spread of fire regulations (Approved Document B). Ducting passing through a fire resistant wall. floor or ceiling must be fire protected with fire resistant materials and be fitted with a fusible link automatic damper.

MAVS in a group of flats

MVHR is a development of MAVS to include energy recovery from the warmth in fan extracted moist air from bathroams and kitchens. The heat recovery unit contains on extract fan for the stale air, a fresh air supply fan and a heat exchanger. This provides a balanced continuous ventilation system, obviating the need for ventilation openings such as trickle ventilators. Apart from natural leakage through the building and air movement from people opening and closing external doors. the building is sealed to maximise energy efficiency. Up to 70% of the heat energy in stale air can be recovered, but this system is not an alternative to central heating. A space heating system is required and MVHR can be expected to contribute significantly to its economic use. MVHR complies with the 'alternative approaches' to ventilation of dwellings. as defined in Approved Document F1 to the Building Regulations.

Schematic of an MVHR system of ventiation

Mechanical ventilation systems are frequently applied to commercial buildings, workshops, factories, etc., where the air change requirements are defined for health and welfare provision. There are three categories of system:

1. Natural inlet and mechanical extract
2. Mechanical inlet and natural extract
3. Mechanical inlet and mechanical extract

The capital cost of installing mechanical systems is greater than natural systems of air movement. but whether using one or more fans. system design provides for more reliable air change and air movement. Some noise will be apparent from the fan and air turbulence in ducting. This can be reduced by fitting sound attenuators and splitters as shown on page 174. Page 180 provides guidance on acceptable noise levels.
Internal sanitary accommodation must be provided with a shunt duct to prevent smoke or smells passing between rooms. In public buildings, duplicated fans with automatic changeover are also required in event of failure of the duty fan.

Internal sanitary accommodation

Basement car parks require at least 6 air changes per hour and at exits and ramps where queuing occurs. local ventilation of at least 10 air changes per hour. Duplicate fans should be provided with a fan failure automatic change over.

Fan assisted ventilation systems supplying external air to habitable rooms must have a facility to pre-heat the air. They must also have control over the amount of air extracted. otherwise there will be excessive heat loss. A mechanical inlet and mechanical extract system can be used to regulate and balance supply and emission of air by designing the duct size and fan rating specifically for the situation.
Air may be extracted through specially made light fittings. These permit the heat enhanced air to be recirculated back to the heating unit. This not only provides a simple form of energy recovery, but also improves the light output by about 10%. With any form of recirculated air ventilation system, the ratio of fresh to recirculated air should be at least $1: 3$. i.e. min . 25% fresh. max. $\mathbf{7 5 \%}$ recirculated. In large buildings where smoking is not permitted, such as a theatre, a downward air distribution system may be used. This provides a uniform supply of warm filtered air.
Ductwork in all systems should be insulated to prevent heat losses from processed air and to prevent surface condensation.

Mechanical inlet and mechanical extract for a theatre

When designing ventilation systems. provision must be made for the displacement of heat energy resulting from the movement of air. This is necessary for maintenance of the building or room ambient temperature. Also. to prevent cold draughts and condensation.
Cold supply air is pre-heated to discharge at the same temperature as the design air temperature for the room served. This will have no real effect on any separate heating system and can be regulated independently by a control thermostat. The following formula can be used to establish the ducted air heater rating in kW . relative to design temperature parameters:

```
Heater rating \(=\mathrm{m} \times\) She \(\times\) Temp. diff. (int. - ext.)
    Where:
```

```
            m = mass air flow rate (kg/s)
```

 m = mass air flow rate (kg/s)
 She = Specific heat capacity of air (1.0 kJ/kg K)
 She = Specific heat capacity of air (1.0 kJ/kg K)
 Temp. diff. = Temperature differential between internal room air and external supply air (K)

```

Air flow rate by volume \((Q)\) is calculated in \(\mathrm{m}^{3} / \mathrm{s}\). To convert this to mass air flow rate in \(\mathrm{kg} / \mathrm{s}\), the volume rate is multiplied by air density \((\rho)\) of \(1.2 \mathrm{~kg} / \mathrm{m}^{3}\).
Therefore:
Heater rating \(=0 \times \rho \times\) Shc \(\times\) Temp. diff. (int. - ext.)
For example. a room with total fabric and infiltration heat losses of 3 kW (see method of calculation on page 125), with air supply and temperature design factors as given below:

\[
\begin{aligned}
\text { Heater rating } & =0.4 \times 1.2 \times 1.0 \times(22--4) \\
& =12.48 \mathrm{~kW}
\end{aligned}
\]

\section*{Air duct heater calculation}

Therefore if the ducted air is required to supply all heating needs. then 12.48 kW is odded to the room losses of 3 kW . bringing the total heat input to 15.48 kW . If the ducted air system is to provide for the design room heat loss of 3 kW . the discharge air temperature ( \(T\) ) can be found by rewriting the formula:

Room heat losses \(=Q \times \rho \times\) She \(\times(T-\) int. air temp. \()\)
Or: \(T=[\) Room heat losses \(\div(\mathrm{Q} \times \rho \times\) Shc \()]+22\)
\[
T=[3 \div(0.4 \times 1.2 \times 1.0)]+22=28.25^{\circ} \mathrm{C}
\]

\section*{Roping Systems for Electric Lifts - 1}

High tensile steel ropes are used to suspend lift cars. They have a design factor of safety of 10 and are usually at least four in number. Ropes travel over grooved driving or traction sheaves and pulleys. A counterweight balances the load on the electric motor and traction gear.

Methods for roping vary:
Single wrap 1:1 - the most economical and efficient of roping systems but is limited in use to small capacity cars.

Single wrap 1:1 with diverter pulley - required for larger capacity cars. It diverts the counterweight away from the car. To prevent rope slip, the sheave and pulley may be double wrapped.

Single wrap 2:1 - an alternative for use with larger cars. This system doubles the load carrying capacity of the machinery but requires more rope and also reduces the car speed by \(50 \%\).

Double wrap - used to improve traction between the counterweight. driving sheave and steel ropes.


Single wrap 1:1 roped


Single wrap 2: 1 roped


Single wrap 1:1 roped with diverter pulley


Double wrap 2:1 roped (for high speed and medium to heavy duty loads)

Single wrap 3:1 - used for heavy goods lifts where it is necessary to reduce the force acting upon the machinery bearings and counterweight. The load carrying capacity is increased by up to three times that of uniform ratio, but the copital costs are higher with increased pulleys and greater length of rope. By comparison. the car speed is also reduced to one-third.

Drum drive - a system with one set of ropes wound clockwise around the drum and another set anti-clockwise. It is equally balanced, as one set unwinds the other winds. The disadvantage of the drum drive is that as height increases. the drum becomes less controllable, limiting its application to rises of about 30 m .

Compensating rope and pulley - used in tall buildings where the weight of the ropes in suspension will cause an imbalance on the driving gear and also a possible bouncing effect on the car. The compensating ropes attach to the underside of car and counterweight to pass around a large compensating pulley at low level.


Double wrap 1:1 roped with compensating rope


Single wrap 3:1 roping


Drum drive


Single wrap 1:1 roped with machine room belr \(w\) fool level. The length of rope is increased which in ts the travel and speed of car

The single automatic push button system is the simplest and least sophisticated of controls. The lift car can be called and used by only one person or group of people at a time. When the lift car is called to a floor, the signal lights engraved in use are illuminated on every floor. The car will not respond to any subsequent landing calls, nor will these calls be recorded and stored. The car is under complete control of the occupants until they reach the required floor and have departed the lift. The 'in use' indicator is now 5 witched off and the car is available to respond to the next landing call. Although the control system is simple and inexpensive by comparison with other systems. it has its limitations for user convenience. It is most suited to light traffic conditions in low rise buildings such as nursing homes. small hospitals and flats.


Lift car vacaled. 'In use' lights switched off. Litt can now be called by other passengers

Ref. BS 5655-7: Lifts and service lifts. Specification for manual contral devices. indicators and additional fittings.

Down collective - stores calls made by passengers in the car and those made from the landings. As the car descends. landing calls are answered in floor sequence to optimise car movement. If the car is moving upwards. the lift responds to calls made inside the car in floor sequence. After satisfying the highest registered call, the car automatically descends to answer all the landing calls in floor sequence. Ony one call button is provided at landings. This system is most suited to flats and small hotels, where the traffic is mainly


Passenger enters the car and prass buttons to travel upwards

When the car moves down all landing calls are collected floor by floor
 between the entrance

While travelling upwards all the landing calls are bypassed

lobby and specific floors.

Full or directional collective - a variation in which car and landing calls are immediately stored in any number. Upward and downward intermediate landing calls are registered from one of two directional buttons. The uppermost and lowest floors only require one button. The lift responds to calls in floor order independent of
call sequence. first in one floor order independent of
call sequence. first in one direction and then the other. It has greater flexibility than the down collective system and is
appropriate for offices collective system and is
appropriate for offices and department ot stores where there is more where there is more
movement between intermediate floors.

A paternoster consists of a series of open fronted two-person cars suspended from hoisting chains. Chains run over sprocket wheels ot the top and bottom of the lift shaft. The lift is continuously moving and provides for both upward and downward transportation of people in one shaft. Passengers enter or leave the car while it is moving. therefore waiting time is minimal. Passengers will have to be fairly agile, which limits this type of installation to factories, offices. universities, etc. It is not suitable in buildings that \(0.4 \mathrm{~m} / \mathrm{s}\).
accommodate the infirm or elderly! When a car reaches its limit of travel in one direction. it moves across to the adjacent set of hoisting chains to engage with car guides and travel in the other direction. In the interests of safety, car speed must not exceed


Plan of lift at top changeover
View of installation

Paternosters convey about 600 persons per hour. This type of lift hos the advantage of allowing passengers to begin their journeys undelayed, regardless of travel direction. Simplicity of control gear adds to the advantages, resulting in fewer breakdowns by eliminating normal processes of stopping. starting, accelerating and decelerating. They are most suited to medium-rise buildings.

Direct acting - the simplest and most effective method, but it requires a borehole below the pit to accommodate the hydraulic ram. The ram may be one piece or telescopic. In the absence of a counterweight. the shaft width is minimised. This will save considerably on construction costs and leave more space for general use.
Side acting - the ram is connected to the side of the car. For large capacity cars and heavy goods lifts. two rams may be required. one each side of the car. A borehole is not necessary, but due to the cantilever design and eccentric loading of a single ram arrangement. there are limitations on car size and load capacity.
Direct side acting - the car is cantilevered and suspended by a steel rope. As with side acting. limitations of cantilever designs restrict car size and payload. Car speed may be increased.
Indirect side acting - the car is centrally suspended by a steep rope and the hydraulic system is inverted.


Direct acting - the simplest and most effective method. but it requires a borehole below the pit to accommodate the hydraulic ram. The ram may be one piece or telescopic. In the absence of a counterweight. the shaft width is minimised. This will save considerably on construction costs and leave more space for general use.
Side acting - the ram is connected to the side of the car. For large capacity cars and heavy goods lifts. two rams may be required, one each side of the car. A borehole is not necessary, but due to the cantilever design and eccentric looding of a single ram arrangement. there are limitations on car size and load capacity.
Direct side acting - the car is cantilevered and suspended by a steel rope. As with side acting. limitations of cantilever designs restrict car size and payload. Car speed may be increased.
Indirect side acting - the car is centrally suspended by a steep rope and the hydraulic system is inverted.


Details of Oil-hydraulic Lift Installation

Originally, hydraulic lifts used mains water supply as the operating medium. The main was pressurised from a central pumping station to service lift installations in several buildings. The oilhydraulic system has oil pressure fed by a pump into a cylinder to raise the ram and lift car. Each lift has its own pumping unit and controller. These units are usually sited at or near to the lowest level served. no more than 10 m from the shaft. The lift is ideal in lower rise buildings where moderate speed and smooth acceleration is preferred. Car speed ranges from 0.1 to \(1 \mathrm{~m} / \mathrm{s}\) and the maximum travel is limited to about 21 m . The lift is particularly suitable for goods lifts and for hospitals and old people's homes. Most hydraulic lifts carry the load directly to the ground. therefore as the shaft does not bear the loads. construction is less expensive than for a comparable electric lift installation.


Vertical section


Plan

BS 5655-10.2 provides specific guidance for the testing and examination of hydroutic lifts.
See also BS EN 81-2 for safety rules applied to constructing and installing hydraulic lifts.

Upward movement - the oil pressure must be gradually increased. The up solenoid valve is energised by an electric current and opens to allow oil to enter obove piston \(D\). As the area of piston \(D\) is greater than valve \(C\). the oil pressure closes the valve and allows high pressure oil to flow to the cylinder and lift the ram and the car.
Downward movement - the oil pressure must be gradually decreased. The lowering solenoid valve is energised by an electric current and opens allowing oit to flow back to the tank through the by-pass. As the area of piston A is greater than valve B . the reduced oil pressure behind the piston allows valve B to open. Oil flows into the tank and the car moves downwards.
A special packing gland with several seals is required between the cylinder and ram.


Oil tank, pump and controls

\footnotetext{
Detail of packing gland
}

Escalators are moving stairs used to convey people between floor levels. They are usually arranged in pairs for opposing directional travel to transport up to 12000 persons per hour between them.

The maximum carrying capacity depends on the step width and conveyor speed. Standard steps widths are 600. 800 and 1000 mm . with speeds of 0.5 and \(0.65 \mathrm{~m} / \mathrm{s}\). Control gear is less complex than that required for lifts as the motor runs continuously with less load variations. In high rise buildings space for an escalator is unjustified for the full height and the high speed of nodern lifts provides for a better service.

To prevent the exposed openings facilitating fire spread. a water sprinkler installation (see Part 12) can be used to automatically produce a curtain of water over the well. An alternative is a fireproof shutter actuated from a smoke detector or fusible links.


Flreproof sliding shutter

\section*{Escalator Arrangements and Capacity}

Escalator configurations vary depending on the required level of service. The one-directional single bank avoids interruption of traffic. but occupies more floor space than other arrangements.
A criss-cross or cross-over arrangement is used for moving traffic in both directions.


Escalator capacity formula to estimate the number of persons (N) moved per hour:
\[
N=\frac{3600 \times P \times V \times \operatorname{cosine} \theta}{L}
\]
where: \(P=\) number of persons per step
\(V=\) speed of travel ( \(\mathrm{m} / \mathrm{s}\) )
\(0=\) angle of incline
\(\mathrm{L}=\) length of each step (m).
E.g. an escalator inclined at \(35^{\circ}\), operating with one person per 400 mm step at \(0.65 \mathrm{~m} / \mathrm{s}\).
\[
N=\frac{3600 \times 1 \times 0.65 \times 0.8192}{0.4}=4792 \text { persons per hour }
\]

Travelators - also known as autowalks. passenger conveyors and moving pavements. They provide horizontal conveyance for people, prams. luggage trolleys, wheelchairs and small vehicles for distances up to about 300 metres. Slight inclines of up to \(12^{\circ}\) are also possible, with some as great as \(18^{\circ}\), but these steeper pitches are not recommended for use with wheeled transport.

Applications range from retail. commercial and store environments to exhibition centres, railway and airport terminals. Speeds range between 0.6 and \(1.3 \mathrm{~m} / \mathrm{s}\). any faster would prove difficult for entry and exit. When added to walking pace, the overall speed is about \(2.5 \mathrm{~m} / \mathrm{s}\).

There have been a number of experiments with different materials for the conveyor surface. These have ranged from elastics, rubbers. composites, interlaced steel plates and trellised steel. The latter two have been the most successful in deviating from a straight line, but research continues, particularly into possibilities for variable speed lanes of up to \(5 \mathrm{~m} / \mathrm{s}\). However, there could be a danger if bunching were to occur at the exit point.


Capacity 6500 to 10800 persons per hour
Typical inclined travelator


\section*{6.Construction and earth moving equipments}

\section*{PART-D}

\section*{6.Construction and Earth moving equipments}

\section*{INTRODUCTION}
- Construction equipments are one of the very important resource of modern-day construction,
-espacially in infrastructure projects.
- In such projects equipments are used for most of the works including earth moving operation, aggregate production, concrete production and its placement etc. In fact, we cannot think of any major construction activily without the involvement of construction equipment.
- There are types of construction equipments suitable for different activities in a construction project.
- The selection of construction equifment defines the construction method, which in a way leads to the determination of time and cost for the project.
- For selecting the right equipment to perform a specific task at the least cost, it is essential to know the features of a construction equipment including its rate of production and the associated cost to operate the equipment.
- While dealing with the construction stage, selection of the most suitable equipment is a very typical problem which is generally faced by the construction engineers or contractors.
- A contractor may not afford to have all types or sizes of equipment which are required for execution of the projects.
- Choice is made after considering many factors lise nature of the project, cost of equipment, depreciation, possibility of its future uses on other projects, its resale value after certain period, the saving expected from the use of such equipments etc.

\section*{CHASSTIGATOSED COXSTRUCHON EQUPMBMIS}

Construction equipments can be classified into many ways.
1. Basis of function of equipment - for example, material loading function, material - transporting function etc.
On the basis of functions equipments can be grouped into
(a) Power Unita
(b) Prime inovers
(c) Tractors
(d) Material-Haedelling equipment
(c) Material-processinig equipment
2. Basis of Operation of equipment:
(a) Equipments used for moving and loosening the materials found in their notural state ogpumps, excavators, earth moving, trenchers, compressors etc:
(b) Equipments used for processing the materials, for example aggregate, concrete and asphalt production.
(c) Equipments used for transporting the processed materials
(d) Equipments used for placing finish materials.
3. Basis of purpose of equipment
(a) General Purpose : Earthwork equipment, Hoisting, Concreting
(b) Special equipments : Piling rig, coffer dams, tumnel boring machine, caissons equipments etc.

\section*{SWECTION OF CONSTRUCTION EQUIPMENT}
- For speedy and economic construction of a project, proper choice of equipment is of primary importance.
- The problem of proper selection is further complicated because of the wide range of equipment commercially available.
- Following factors -miust be considered before having a final choice

\section*{1. Use of Existing Equipment}
- When the full utilization of new equipment for the future projects is uncertain, it may be desirable to use existing old-equipment even if its operation is sometwhat more expensive.
- Depreciation cost of the new machine is likely to be high, and this would raise the owning cost of the equipment and hence the unit cost of work.

\section*{2. Availability of the Equipment}
- The equipment which is easily available in the market should be selected for the purpose because any delay in delivery may increase the construction cost, repairing of such equipments will also be done easily.

\section*{3. Use of Standard Equipment}
- Standard equipment is commonly manufactured in large numbers and bence these are readily available and moderately priced.
- Spare parts of standard equipment are easily available and are less costly.
- After the work is over, Selling off standard equipment and its spare parts is generally easier than in comparison to non-standard or specialized equipment.

\section*{4. Country of Origin}
- It is always suggestable to buy equipment from own country because this will decrease the repair cost and downtime cost and at the same time it will boost up nation's economy.
- For imported equipment, it is preferable to import from a poft currency rather from a hard currency country, to save forejen currency' reserves.

\section*{5. Suitability for Future Use}
- If a machine is required only, for some part of its use full life, then ways to disposed off or its deployment on some other site should be considered.
- Obsolescence of the machine should not be overlooked.
6. Suitability for Site Conditions
- The equipment chosen should suit the conditions of the job, soil, valley, working conditions and climate of the region.
7. Size of Equipment
- Larger equipment give higher outputs on full load, but its-cost of production is usually greater than that of smaller units working on partial load,
- For larger equipment transportation to site is, generally difficult and costly in comparison to smaller equipment.
- Servicing, maintenance and repair facilities have to be greater for larger units. However, larger machines are usually more suitable for tough working conditions.
- Standby cost of larger size equipment is more thon, that of smaller equipment.

\section*{8. Versatility}
* If-possible the machine selected should be able to do more than one function, end should be inter convertible where ever possible.

\section*{9. Suitability of Local Labour}
- The locally available-operators and technicians should be able to handle the selected equipment.
- Special equipment may have excellent performance but may be difficult to get repaired during break down.

\section*{C0Si one}
- Cost of possession of an equipment is called cost of owning to which can be added the cost of fuel for ruming the equipment.
- It is the amount by which an equipment should be hired. It is generally estimated on hourly basis.
- It should be noted that this does not include the operators cost.

Following factors should affect the cost of owning and operating.
(a) Initial cost of equipment, which includes equipment cost, transportation cest, loading and unloading charges and installation cost.
(b) Severity of service condition under which it is used.
(c) Number of hours used in a year.
(d) Quality of Maintenance and repair-
(e) Demand of equipraent at the end of service life.
(9) Service Dife of equipment:
- Following cost constitutes the cost of owning and operating.
(i) Depreciation cost
(ii) Maintenance \& Repair cost
(iii) Investment cost
(iv) Fuel or energy consumption cost
(v) Lubricating oil cost

Note: Annaal maistenance and reqoir cost \(=50\) to \(100 \%\) of annual depreciation but \(100 \%\) is a foir value.
Annual depreciotion \(=\frac{\text { Intial value-Solvoge value }}{\text { Useful life of equipment }}\)

\section*{DCONOMIC LIPE OF CONSTRUCTION EQUIPMFNT}
- A construction equipment has two types of life.
(a) Physical life : The potential service life or time period, of an equipment before which it physically becomes unable to produce a good or service.
(b) Bconomic life: It is defined as the time period over which an equipment is expected to be use able, with normal repairs and maintenance, for the purpose it is hired.
- A machine can be used for long period (till the end of physical life) through expensive repair and mantenance cost, may have small economic life ie. during which it gives maximum profit. and lowest éperating cost.

Note: Economuc life may also be defined os the period of replacement of on equipment that moximises the profit from the equipmenf or minimizes- the cumulatively hourly owning and aperating cost.
Generally the economic life of an equiprent is given in terms of years ard working hours.
- When should the equipment be replaced?
- If the equipment is replaced too early, he will experience capital loss, and if too late, the equipment might have passed its period of economic operation.
- The owner must consider all costs related to the ownership and operation of the equipment, and the effect which the continued use will have on these costs.

\section*{The costs to be considered are:}

\section*{1. Investment Costs}
* It is the fixed cost which is incurred at the time of purchasing equipment but it also includes some other parameters inclusive which definition get modified as :
Investment cost comprises fixed cost which is incurred at the time of purchasing equipment, interest on the money invested in buying the equupment, taxes pertaining to the ownership of the equipment, insurance and storage.
- Money spent in the purchase of equipment, if invested in a bank would bring a return in terms of interest
- Opportunity of earning this interest is lost due to purchase of the equipment, and so the recovery of this amount should be made on the machine's amount.
- Generally a combined investment cost including interest, taxes, insurance and storage is taken 3. atabout 10 to \(12 \%\) per year of the value of the equipment at the beginning of year.
- Average annual cost of the equipment is found out in following ways.

Case -I. When there is no salvage value of the equipment
\[
P_{a v}=\frac{P+P}{2}=\frac{P(n+1)}{2 n}
\]
where,
\(\mathrm{P}=\) Total initial cost
\(\mathrm{P}_{\mathrm{av}}=\) Average value
\(\mathrm{n}=\) life' in years


Value of equipment by year
Case -II. When there is salvage value of the equipment; The average value of the equipment is the sum of the values at the beginning of the first year and the end of the last year divided by 2 .


Value of equipment by year
\[
P_{w}=\frac{P+\frac{P-S}{n}+S}{2}=\frac{P(n+1)+S(n-1)}{2 n}
\]
where,
\(\mathrm{P}=\) Total original cost
\(\mathrm{P}_{\text {av }}=\) Average value
\(n=\) Life in years
\(\mathrm{S}=\) Salvage value
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Note: In both cases above, the book value is bosed on stroight line depreciation.

\section*{2. Depreciation and Replacement Costs}
- When one considers the replacement of equipment, it is necessary to know the salvage val碓 of the machine and the replacement cost of a similar equipment.
- Replacement cost of an equipment must be increased \(5 \%\) every year to balance the increagy in cost of equipment every year.

\section*{3. Maintenance and Repair Costs}
- It is necessary to keep accurate records of maintenance and repair costs aslarge variations ay observed in these costs every year.

\section*{4. Downtime Cost}
- Downtime is the time that a machine is not working because it is undergoing repairs. adjustments.
- Downtime tends to increase with usage.

Note: Avcilability is a term that indiectes the portion of the time that a mochine is in actual production, expressed of a percent. Thus, if a mochipe is down \(12 \%\) of the time, its avaikability is \(88 \%\)
5. Obsolescence Cost
- Continuing improvements in the productive capacities of construction equipment have resultera in lower production costs,
- It observed thet ; if by installing a new machine the production'cost is reduced by \(5 \%\), whet compared with the production costs of an existing machinc, the existing machine will suffer loss in value equal to \(5 \%\). This is defined as obsolescence loss.
- These improvements, whose advantages can be gained only by the replacement of older equipmerik with newer equipment, decrease the desirability of continuing to use the older equipment.
- Primary purpose of a tractor is to pull or push loads, and it may be used also as mount for many types of equipment such as bulldozer, shovel, dragline, hoe, tenchers etc. Therefore.
- It is considered as one of the most important equipments and is indispenssble on most of the construction projects whether small or big.

\section*{Types of Tractors}

Tractors are divided into foXowing types :


\section*{Factors affecting in selection of a tractor}
- In selecting a tractor, several factors should be considered and some of them are enumerated as follows;
(a) size required as per magnitude of the job.
(b) kind of job for which it is to be used like bulldozing, pulling a scraper, clearing land etc.
(c) type of footing over which it is to operate i.e. high tractive or low tractive efficiency.

단) (d) firmness of haul road.
(c) amoothness of haul road
(i) slope of haul road.
(g) slope of haul road.
(b) type of work it is no do after this job is completed.

\section*{Crawler tractor}
- If a tractor is mounted on crawler, it is called crawler tractor.
- Crawler track is an endlcas chain consisting of steel links made of steel plates connected tugether by pins and bushings.
- It is used for auving heavy units on rough surfuce having poor traction. The optimum pull that a crawler tractor can provide depends upon its weight and is equal to the coefficient of traction (depending upon road surfaces) multiplied by the weight of unit, regardless of the power supplied by the engine. Its
- Maximum spoed is limited to 10 kmph while average speed lies hetveeen 4.5 to 5.6 kmph . It ie suited for short haul sny 60 to 150 m .
- Special advantage lies in ita ability to travel over very rough surfaces and to climb very steep grades up to 25 to \(29 \%\) at a speed of 2.75 kmph .
- It has a life of 8 to 12 years ( 9000 to 16000 hre) depending upon its horee power which varies form 100 to \(300 \cdot \mathrm{HP}\).

\section*{Advantages of erawler tractors}
(1) Having more tractive effort it can operate on soft froting such as loose or muddy soil.
(ii) It can operate in rocky formations where rubber tyres may be seriously damaged,
(iii) It can travel over ratigh surfaces, which tasy reduse the cost of maintaining heul roeds
(iv) It has greater floatation because of lower pressure under the tracke.
(v) Being compact and jowerful, it can handle very difficult jobe

\section*{Wheel tractor}
- The basic advantages of a wheel tractor when compared with a crawler tractor lies in its higher spiced. In order to attain a higher speed, a wheel tractor must sacrifice its pulling effort. As the speed is increased with the help of higher geara. Rimgull will be decreased in approximately the same proportion.

- It possesses a lower cuefficient of traction between rubber tyree and some soil surfaces, the wheel tractor sturts slipping before developing its rated rimpull.
- Its useful life lies between 8 to 10 years ( 12,000 to \(15,000 \mathrm{hre}\) ) depending upon on its horsepower which is gonerally more than 75-HP.

\section*{Advantages of wheel tractors}
(i) It can trovel at higher speed (maximum speed up to 50 kmgh ) on the job or more from one job to another.
(ii) It can give, greatpr output where considerable travelling is neceseary.
(iii) It can travel over paved highways without damaging the surfaces.
(iv) It can operate easily which makes the operator less fatigue.
(v) A wheel tractor is very useful in the following-conditions:
(a) Long push distance
(b) Fast return
(c) Loose soil little or no rock
(d) Level or downhill work
(e) Good underfoot conditions

- Basicly a shovel is a tool for digging, lifting, and moving bulk materials, such as soil, coal, gravel, snow, sand, of ore.
- Shovels are extremely common tools that are used extensively in agriculture, construction, and gardening
- When a shovel is mounted on a Power vehicle it is called as Power Shovel
* Power shovels are used mainly to excavate earth and load into trucks or tractor-drawn wagons.
* Powar shovels can excavate all types of earlh excepr solid rock withotit prior locsenting.
- The basic parts of a power shovel include Monnting, Cab, Boom, Dipper stick, Dipper.
- Size of power shovel is indicated by capacity of its dipper, generally expressed in cubic meters.
* Power shovels are coiamonaly available in dioner sizen of \(0.29,0.38,0.37,0.76,0.95,1.14,1.33\). 1.53 and \(2.91 \mathrm{m3}\).

\section*{Types of Power Shovels}
1. Crawler mounted power shovel,
2. Rubber tyred mounted power shovel,

\section*{Crawler mounted Shovels}
- It is mounted on crawler tracks.
- It is has very low travel speed.
- It exerts low pressure on the soil and hence suited for muddy and soft ground surface.

\section*{Rubber Tyre mounted Shovels}
- It is mounted on Rubber-tyres.
* It has higher travel speeds are useful for small jobs where considerable travelling is involved.
- It exerts considerablo pressure on the soil surface hence suitable for road and the firm ground surfaces.

\section*{Operations of Shovels}
- Rogition the shovel near the face of the carth to ke excayated.
- The dipper is lowered to the floor of the pit, with the teeth pointing into the face.
- A penetrating force is applied through the dipper shaft and at the same time tension is applied to the hoisting line to pull the dipper up along the face of the pit.
- If the depth of the face (called the depth of cut) is just right, the dipper will be filled as it reaches the top of the face.
- If the depth is shallow it will not be possible to fill the dipper completely without excessive penetrating force and hoisting tension.
- If the depth of cut is more than is required to fill the dipper, the depth of penetration of the dipper into the face must be reduced, if the full face is to be excavated or to start the excavation above the floor of the pit.


As the basic character of the machins is, dragring the bucket spainst the material to be excavated, it is known as Dragline.
- Draglinen are used to excavate earth and load it into haul units, noch as tracke or to deposit It an spoil banks and embankinente near the place from where it in excavated.
- Size of dragline is expressed by the saze of ita trucket

\section*{Advantages of Dragline:}
1. It doen not have to go into the pit to excavate. It may operate mon natural firm ground
2. If it has a long boam then it can despose of the earth in one operation without the need for houl
3. It can excavate below its level and under water.
4. It can extavate trenches without shoring.

\section*{Disndvantage of Dragtine}
- One of the disadvantages of a dragine is that its output is only \(75-80 \%\) that of a power thiovele

\section*{Types of Draglines}
1. Crawler-mounted Draghines-These can operate on soft and muddy ground surfaces and hay
2. Rutbertyre-mounted Draghines- These can operate on hard surfaces and has speed of 50 kraph . Operation of Dragline
- Exeavatioe is started by owinging the eropty bucket to the digging position at the satoe time
loosen the drot and the hoist cables.
- Exeavation is dane by pulling the hucket toward the machine while maintaning tension in the hoist caliz.
- When the tucket is filled the operator takes in the hoiat cable while playing out the drag cable.
- Damping is door by releasing the drag cable
- Filling the bucket hoisting swinging and dumping of the loaded bucket, followed in that order, constitute one cycle.

to redure the ploye.

\section*{Output of Draglines}
* White the cijict of job and managersent conditions on the output of the dragline will be about
the same as for a power shovel, and the job and management facturs may be uned for obtainint the same as for a power ahovel, and the job and management facturs may be uned for obtaining
the probable ontpot of draglines, the size of bucket and length of boom have a direct effect the output of a dragline.
- Buckets art avoilable in classes, such as light-duty, medium-duty and heavy-duty,
- Lightduty backets are for materials that are easily duge, such as sandy loam, sandy clay, or sand.
- Mediva duty buckets are for general excavating service such as digging clay, ooft shale or
loose gravel.
* Heary-duty buckets are for handling Masted rock and other abrasive materials.
- Blacketa are ofen perforated to permit draining of water from the laads.
- In selacting the size and bucket type, the dragline and bucket should be matched for ben
efficiecy.
- In selecting the bucket size care ahould be taken that the combined weight of the load and the
- bucket doss not esoed the safe load recommended for the dragline.

- Bulldozers are very efficient excavating tools for short haul applications up to 100 m .
- It is essentially a heavy steel blade which is mounted on the front of a tractor. The heavy blade attached to the tractor pushes the material from one place to another.
- The size of a bulldozer is indicated by the length and height of the blade.
- Bulldozers are ciassified on the basis of :

\section*{(1) Position of angles}
(a) Bulldozers- In these blade is set perpendicular to the direction of movement. It pushes the earth forward and dump to some place.
(b) Angle Dozers- In these blade is set at an angle with the direction of movement. It pushes the earth forward and to one side.
(2) Based on mounting
(a) Wheel mounted
(b) Crawior mounted

Advantages of the crawler-mounted bulldozer:
(a) ability to deliver greater tractive effort on soft, loose or muddy soil
(b) ability to travel on muddy surfaces
(c) ability to operate in rock formations, where rubber tyres may get damaged, which may reduce the cost of maintaining haul roads
(d) greater flotation because of lower pressures under the tracka
(e) greater use-versatility on jobs.

\section*{Advantages of the wheel-mounted bulldozers:}
(a) higher travel speeds on the job or from one job to another
(b) elimination of hauling equipment for transporting the bulldozer to the site
(c) greater output, especially when significant travelling is required
(d) less operator fatigue
(e) ability to travel on bitumen roads without damaging the surface.
(3) Based on control-for raising and lowering the blade
(a) Cable controlled
(b) Hydraulically controlled

\section*{Advantages of the Cable controlled bulldozers}
(a) Simple to install, operate and control
(b) Easy in reparing
(c) Reduction in the danger of damaging a machine

Advantages of the Hydraulically controlled bulldozers
(a) Able produces a high down pressure on bladea to force blades into ground
(b) Able to maintain a precise setting of the position of the blade.
- In addition to excavating and hauling many other functions are also performed by Bulldozers from start to completion of an project like:
(1) Clearing land of timber and vegetation
(ii) Opening ap temporary roads through mountains and rocky areas
(iii) Moving earth for haul distances up to about 100 m
(iv) Pulling loaded tractors and scrapers
(v) Levelling and apreading earth fills
(vi) Backfilling trenches
(vii) Clearing construction sites of debris
(viii) Msintaining haul roads
(ii) Clearing the floors of borrows and quarry pits

\section*{Compacting Equipment}

\section*{NTRODUCTIOA}
- Compaction is the method of artificially densifying the soil by pressing soil particles together into close contact, resulting in the expulsion of air and/or water from the soil mass.
- Compaction is done to increase the strength of an earth fill or an embankment.
- Compaction refers to the method employed by a compactor to impart energy into the soil to achieve compaction.
- Compactors are designed to use one or a combination of the following types of compactive efforts:
(1) Kneading action -Manjpulation or rearranging
(2) Static weight - Pressure application
(3) Impact - Sharp blow
(4) Vibration-Shaking

\section*{TPES OPROYMERS}

Sheep's Foot Rollers

- Sheep's fnot rollers gre suitable for compacting fine croined materials such asclays and nixtures of sand and clay.
- These cannot compact sranular sails such as sand and_eravel.
- Depth of a layer of soil to be compacted is limited to approximately the length of the feet.
- They are used for manipulation and compaction of plastic clays where stratification must be eliminated, such as clay cores in dams.
- Sheep's foot rollers can be towed or self-propelled, and its drums consist of a cylindrical shell with protruding 'feet' which provide areas of high contact pressure under the machine.
- Feet can have numerous shapes and terms such as taper foot and clubfoot have been used to describe their particular features.
- Because of the small contact aren of the sheep's foot roller it requires itlarge number of passes to provide even one complete coverage of an area of soil.
- Sheep foot rollers are slow, have a very high rolling resistance;and therefore cost per unit volume compacted is high.

\section*{Smboth-wheel RoXers}


Smooth-wheel Roller
- Smooth-wheel Rollers can be self-propelled or of the towed type with'smooth steel roll surfaces.
- These rollers may be clasisified by type or by weight.
- These rollers are effective in compactine ghanular soils, such as sind, gravel, and crushed stone and they are also effective in smoothening surfaces of soils that have been compacted by tamping rollers.
:- When compacting cohesive soils, these rollors tend to form a crust onver the surface, which may prevent adequate compaction in the lower portion of a lift
- Self- propelled eategory the inachine ean be a three roll (tricycle configuration) with the front wheel used for steering while the rear wheels are powered for driving-
- They can be tandem two rolls type also.
- Contact area between the drum of the roller and the surface of the soil is a narrow strip and, as a result, the stresses in the soil fall off rapidly as depth in the layer increases,
- This type of roller is, therefore. limited in performance such as, to compaction of fairly thin Cliyers that is white:3hsmardepending on the size of the equipment.
:- Inc atecl drums of tho rolls mav be ballated with water or sand to increatedelkerweightss
- If a rollêr is designatted as 2 \(\mathrm{tu} 128 . t\), it means that the minimum weight of the machine only is 7.3 t and that it can be ballasted to give a maximum weight of 12.8 t .

\section*{Pneumatic-tyred Rollers}


Pneumatic-tyrod Rollet
- Pneumatie-tyred Rullers are surface rollers, which apply the princinle of kneading action to effect compaction below the surface.
- These roZers are used for rolling subgrades: airfcild and bases of carthfill dams.
- They can be self-propelled or towed., snall:or large-tyred units.
- These rollers rely on dead weight acting or upon pneumatic tyred wheels to produce the compacting effort.
- The weight of a unit may be increased by ballasting.

Theahnge-tyitedeotiermareravailable varying from 13.6-180 tonnes gross weight.

\section*{Tamping Rollers}

Tamping foot compactors (Fig. 5.3) are high-speed, self-propelled, nonvibratory rollers. These rollers usually have four steel-padded whecls and can be equipped with a small blade to help level the lift. The pads are tapered with an oval or rectangular face. The pad face is smaller than the base of the pad at the drum. As a tamping roiler moves over the surface, the feet penetrate the soil to produce a kneading action and a pressure to mix and compact the soil from the bottom to the top of the layer. With repeated passages of the roller over the surface, the penetration of the feet decreases until the roller is said to walk out

Vibrating drum rollers are actuated by an eccentric shaft that produces the vibratory action. The eccentric shaft need be only a body that rotates about an axis other than the one through the center of mass. The vibrating mass (drum) is always isolated from the main frame of the roller. Vibrations normally vary from 1,000 to 5,000 per min.

Vibration has two measurements-amplitude, which is the measurement of the movement, or throw, and frequency, which is the rate of the movement, or number of vibrations (oscillations) per second or minute (vpm). The amplitude controls the effective area, or depth to which the vibration is transmitted into the soil, while the frequency determines the number of blows or oscillations that are transmitted in a period of time.

The impacts imparted by the vibrations produce pressure waves that set the soil particles in motion, producing compaction. In compacting granular material, frequency (the number of blows in a given period) is usually the critical parameter as opposed to amplitude.

Compaction results are a function of the frequency of the blows, the force of the blows, and the time period over which the blows are applied. The frequency/time relationship accounts for the slower working speed requirement when using vibratory compactors. Working speed is important as it dictates iow long a particular part of the fill is compacted. A working speed of 2 to 1 mpich provides the best results when using vibratory compactors.
amplitude
The venical distance the vibrating drum or plate is displaced from the rest position by an eccentric moment.

1. Sheepsfoot rollers
2. Tamping rollers

3. Smooth-drum vibratory soil compactors

4. Pad-drum vibratory soil compactors

5. Pneumatic-tired rollers

\section*{Vibrating Compactors}
- Vibratory compactors enlance the performance of static weight rollers by adding dynamic forcea, usually achieved by a rotating eccentriailly weighed shaft mounted inside the roller.
- Mibrating compactors have shown their abilities to produce excellent densification of sails sach as eand, gravel and relatively large stones.
\(\therefore\). . As these materials are vibrated, the particles shift their position and nestle more closely with adjacent particles to increase the density-of-ikergas.
- Typer of Vibrating compactors are :
(a) Vibrating shcep's foot rollers,
(b) Vibrating steel-drum rollers,
(c) Vilurating pneumatic-tyred rollers,
(d) Vilurating plates or shoca.

\section*{Manually Operated Vibratory Plate Compactors}


Wbrating Plate Coimpactor
- These machines have a flat plate in contact with the soil.
-. Because of their much smaller sixe, vibrating plate compactors have lower ontputs of compacted soil than the larger vibrating rollers
- These are usedfor cumpaction of cohesion-less toil in confined sreas or apaces,-
- Power unit and contrel bandles, for the pedestrian operator are attached to a chassis sutpended above the base-plate on eprisge or other form of flexible mounting-

\section*{Manually Operated Vibratory Tamping Compactors}


Wibratory Tamping Compactor
- Vibro tampers lave an enpine-diven reciprocating mechaniem whith acts on a epriog oysters
 , C.-rite)
- The most commonly used machines have a mass in-the-range-of \(-50-150 \mathrm{~kg}\), and usually operate at a frequency of about 10 Hz .
- Their main mode of compaction is by impact and they are suited for the-eompaetion-of-most. types of soil.
- Because of their low output they are used in confined areas or spaces, where their portability and maneuverability are a particular advantage.

\section*{Manually Operated Rammer Compactors}


Rammer Compactor
- Ramner compactors are self-propelled in which each blow moves them ahead slightly to contact new soil.
- These units range in impact from 40 to 120 per sec at an impact rate up to 850 per min. Ferporninarithcratenaninlute lighlow, area covered per hour, and depth of compaction (iif) in cm .


\section*{7.Soil reinforcing techniques}

\section*{Reinforced Soll}

Reinforonent in different farms is added to seil, in order to improve its mehanical properties. Soils are strong in compression but weak in tewsion. This woak propecty of soil is improwed by introducing reinforcing elements in the direction of tensile itress. Reinforcement material generally consiste of palvanized of stainless stevl strips, buri grids or fobrics of spectied malerial, or woed, pobimer and platice, etc: The reinforcement is placed more or less the same way as steel in concrex. The end product is callisf minforced soil, and is very effectively usod for retaining structure, embunkisents, footings and subgride, ete.

\section*{Soll Nailiso}

It is a method of reinforing the seil with stell bats of ocher mabrrials. The purpose is \(\mathbf{w}\) incrase the tersile and shear strength of the sail and mestrain ils displacements. The nails are vither phaced in drill boreholes and prouted alung their total length to form "groated nails", or simply driven into the ground as "driven nais". The technigue permits stabilization of both nutural doper und vertial or inclined exavations.

\section*{III. MATERIALS}

There are two basic materials used in the construction of reinforced soil.
- Soil or fill matrix
- Reinforcement or anchor system

There used to be adequate interrelationship between the materials used. Based on the design strength and availability, the materials are selected. We will discuss one by one, the materiais that are being used.

\section*{Soil or fill matrix}

The shear properties of soil can be improved as theoretically any soil could be used to form earth reinforced structure. In long term conventional structures the soil used is the well graded cohesionless soil or a good cohesive frictional fill although pure cohesive soils have been used with success. The advantages of cohesionless soil are that they are stable, free draining, not susceptible to frost and relatively noncorrosive to reinforcing elements.

The only disadvantage is its cost. As a convenient compromise between the technical benefits from cohesionless soil and economic benefits from cohesive soil, cohesive frictional may be preferred.

Sometimes the use of waste material as fill for reinforced soll structures is attractive from an environmental as well as economic view point. Mine wastes and pulverized fuel ash are the wastes usually employed

\section*{Reinforcement}

A variety of material including steel, concrete, glass, fiber, wood. rubber, aluminium and thermoplastics can be used as reinforcing material. Reinforcement can have the form of strips, grids, anchors and sheet material chain, planks, rope, vegetation and combinations of these or other material forms.
- Strips are flexible linear elements having their breadth greater than their thickness. Strips are formed from aluminium, copper, polymers and glass fiber reinforced plastic and bamboos. The forms of stainless galvanized or coated steel strips are etther plain or with projections such as to increase the friction between reinforcement and fill.


Figure 3.1
- Grids or are also used as reinforcement. Grids are formed from steel in the form of plain of galvanized weld mesh or from expanded metal.


Figure 3.2
- Sheet reinforcement may be formed from metal such as galvanized steel sheet, fabric or expanded metal not meeting the criteria for a grid

Flexible linear elements having one or more pronounced distortions which act as abutments or anchors in the fill or soll. They may be made from materials like steel, rope, plastic or combination of materials such as webbing and tyres; steel and tyres etc.

Composite reinforcements can be formed by combining different materials and materials forms such as sheets and strips, grids and strips and anchors, depending on the field problem requirement.

The principal requirements of reinforcing materials are strength, the stability (low tendency to creep), and durability, case of handling, a high coefficient of friction. and/or adherence with the soil, together with low cost and ready availability.

\section*{Geosynthetics}

Geosynthetics are manmade products. They are flexible and planar (sheet-like). They are manufactured from synthetic polymeric materials and sometimes from natural materials. They find use in Geotechnical engineering as a separator, filiers, drains, reinforcement, hydraulic barriers, protectors and erosion contral system.
L. Geotextiles are porous geosynthetics that resemble a thick strong cloth or blanket with its strands and fiber visible. They are planar permeable, polymeric material that are usually made from polypropylene and sometimes from polyester, polyethylene or from natural fibers such as jute they can be woven, non-woven or knitted. Woven geotextiles are produced by weaving or interlacing, usually at right angles of two of more set of fibers. Non-woven geotextiles are produced by mechanical bonding or needle punching of randomly oriented fiber. Geotextiles can be 0.25 to 7.5 mum thick and have a mass/unit area of 150 to \(2000 \mathrm{gm} / \mathrm{mm}^{\wedge} 2\)


Fig 1. WorerGeotectile Fig 2. Natworm Geotertile
Figure 3.3
II. Geogrids are mesh like or grid like geosynthetics with square or rectangular openings that are larger than the thickness of the ribs. the tib thickness ranges from 5 to

15 mm and the mass/unit area lies between 200 to 1500 gms


Figure 3.4
III. Geonets are similar to geogrids but have thinner member sand angular apertures not square or rectangular but resembling parallelograms


Flgure 3.5

\section*{IV. SOIL REINFORCEMENT TECHNIQUES}

Soil reinforcement techniques can be divided into two major categories
1. Insitu soil relnforcement
2. Canstructed soil reinforcement

In the insitu reinforcement technique the reinforcement is placed in an undisturbed soil to form a reinforced soil structure. This includes the technique of soil nailing and soll dowelling. The reinforcement used for insitu structures is usually linear owing to the method of installation.

\section*{1. Open excavation using soil nails:}


Figure 4.1
Vertical or steeply friclined cuts can be made for open excavation using rigid soll nails as reinforcements. Such cuts are also referred to as nailed soil walls. Unlike reinforced soil walls are constructed from bottom to top, nailed soil walls are construcied from top to bottom. The facing of such walls is usually in the form of a wire-mesh reinforced shot Crete panels, although metal plates and other types of panels have also been used. Soll nails are installed at an inclination of 20 to 25 degrees to the horizontal near the ground surface so as to avold intercepting underground utilities and the inclination is reduced to 10 to 15 degrees as we go deeper into the cut.

\section*{2. Constructed soil reinforcement technique:-}
1. Reinforced soil structures with vertical face:-

The facing usually comprises of prefabricated concrete or steel panels joined together by an interlocking arrangement. The soil used as backfill in such cases is granular soil with less than \(15 \%\) fines to enable development of large friction between the reinforcement and soil. The most often used reinforcement is steel strips since they have large tensile strength as well as low
extensibility, Construction takes place from bottom upwards and the reinforcement is placed sequentially as layers of sotl are compacted, one after the other.


Figure 4.2
The constructed soil reinforcement technique deseribes the technique where the reinforcement is placed at the same time as an imported and remolded soll. Such technique are often called as bottom up process as they involve the placement of a fill and reinforcement simultaneously, these include structures such as reinforced soil embankinents and bridge abutments. The reinforceiment used for the constructed category is in the form of strips, mats or grids.

\section*{V. APPLICATIONS OF SOIL REINFORCEMENT}

\section*{1. Slope failure repairs}


Figure 5.1
Large and small landslides and failures of natural slopes offen occur in areas where the value of the environment (for technical or economical or touristic or artistic reasons) call for the repair of the slope to the original (or as close as possible to the original) geometry. Geogrids allow using the same soil of the landslide to reinstate the slopes thus achieving fundamental savings over the solution of importing a soil with better mechanical characteristics. The geogrid reinforced slope can be easily vegetated with the local essences, in order to obtain the best integration with the surrounding

\section*{environment.}

\section*{2. Slope cutting repairs}

The installation of pipelines and other underground structures often requires cutting a slope in protected or valuable areas where the Authority imposes to repair the cutting to the original situation. This may produce geotechnical problems due to the fact that the excavated soil results in lower mechanical characteristics than the original soil in the slope. Geogrids allow improving the stability of the soil: the slope can be rebuilt without using expensive consolidation techniques.

\section*{3. Steep slopes embankments and bunds}

(a) Highway embankment on hill slope
Figure 5.2
There are many situations where the shortage of space or fill material calls for the construction of embankments and bunds with very steep slopes, greatly in excess of the maturally stable angle.

Geogrid reinforced soil structure provide a safe, sound and economical solution which can be used for some of these applications:
- Noise protection bunds along highways, railways and airport taxiways
- Blast protection embankments
- Increase of the available volume in exhausted landfills
- Construction of embankment dams for solid or Iiquid impoundments.

In all these applications, the inherent flexibility, the case of construction, and the use of any locally available fill soil are the technical and economic advantages of geogrid reinforced soil structures.

\section*{4. Widening of slope crest.}

There are different cases where a rather flat slope has to be converted to a sub-vertical wall enlargement of parking areas, smoothing of sharp road bends, land reclamation projects and housing developments are just examples of them. In most of these cases the toe of the slope cannot be moved forward, due to the right-of-way limits or natural
boundarles (rivers, roads, etc.). Therefore the crest of the slope shall be widened, making the slope steeper or even vertical, Geogrids allow building steep slopes and walls with almost any locally available fill soil. The face can be built with a vegetated or concrete finishing different solutions can be easily implemented at design and construction stages to meet technical, architectural. environmental requirements. The original slope has usually to be cut at the bottom to yield enough space for placing the reinforcing geogrids. All the operations can be performed with standard earthmoving machinery and easily available tools, even by unskilled labourers. And, very important, the traffic and the activities in front of the slope are not disturbed by the construction operation.

\section*{5. Bridge abutments and wing walls}

Bridge abutments and wing walls are often the earth retaining structures that support the highest loads. Besides the high vertical and horizontal loads directly applied by the bridge deck, dynamic loads from heavy traffic, and sometimes seismic loads challenge the design engineer. Soft foundation soils, high water table, environmental impact regulations often provide further problem. Geogrid reinforced soil structures provide strong yet flexible, retaining structures. Bridge abutments anid wing walls can be designed and built to resist all the anticipated loads with the required Factors of Safety, even with low quality fill soil. Soft soil stabilization and drainage problems can be solved with geogrids and geocomposites. The face can be designed to fulfill any requirement regarding visual and environmental impact.

(b) Bridge abutment -

Figure 5.3

\section*{6. Soll retaining structures}

Soil retaining structures can be divided into:
- FACE WALIS which are usually designed to cover a steep rock slope or a cliff, for environmental and safety reasons. This kind of wall usually has only small or no borizontal pressures from the backfill, but has to resist the internal outward pressure of the fill soll.
- COUNTERSCARP WALLS which must support the constant load of a sloping terrain
on the top. The soil pressures to be resisted are usually much higher than for a face wall.
- RETAINING WALLS which are usually designed to support both static and dynamic loads. The design and construction of face walls, retaining walls and counterscarp walls may have to deal with technical, practical and economical problems due to availability of the fill soil, access to the job site with operating machines, speed of construction, aesthetics, and overall cost and so on. The Technical Authorities and the client often require specific solutions, sometimes with a vegetated face. while sometimes a concrete face or another type of "rigid" face is preferred.


Figure 5.4
Geogrid reinforced walls can be designed and built to fulfill the most varied requirements in terms of load support and face finishing geogrids reinforced soil structures provide a cheap and diversified solution to wall construction problems the experience of engineers can help to find the proper solution, elther with a vegetated of concrete face or new solutions can be developed for the face finishing as well as for the construction method and all the ancillary design details.

\section*{7. Road and Railway embankments}

Road and rallway embankments are usually large and high earth structures, which require considerable quantities of fill soil and land.

The cost of the fill soil and its transport from the quarries, as well as the value of the land, may be so high that some alternatives may be
considered, such as designing steeper slopes or using lower quality fill soil. Geogrids allow the slope to be bailt at any inclination with the required Factors of Safety. The specific surcharge loads, as well as the dynamic or seismic loads, can be incorporated into the design to provide safe construction to the Client, the Engineer and the Contractor. Almost any locally available soil can be used for the geogrid reinforced embankment; this facility can produce very large savings in both costs and construction time.


Figure 4.5```

