Tharsuguda Engineering School, Tharsuguda

Lecture Notes
on
Control Systems \& Component $6^{\text {th }}$ sem, ETC

Prepared By: Rashmita Badhai
Deportment of Electronic \& Telecommunication Engineering
Session - 2021-22 (summer)

Chapter- 1
Fundamentals of control system
Fundamentals of conn
Syllabus:
Classification of control system, open lop system and closed loop system and its comparision. Effects of Feedback, standard test signals (step, Ramp, Parabolic, Impulse functions), servomechanism and Regulators (Regulating systems).

Control systems are an integral port of modern society: They play a vital role in our day to day life. Control systems finds applications in manufacturing process industries, satellites, guided missiles, navigation, biomedical engineering.
Baric Definations:
System: System is a group of physical components which gives proper output for a given input.
Control system: Control system is a group of physical
components which gives controlled a given input.
Input: The excitation applied to a control system from an external energy source is usually known as input.
output: The actual response that is obtained from a control system duce to the application of the input is called output.
Plant or Process: It is defined as the portion of a system which is to be controlled or regulated. It is also called process.

Controller: It is an element within the system itself, or external to the system and it controls the plant or the process.

The input variable is generally known as reference input and output is generdeley called controlled output.
Disturbances: Disturbance is a signal which tends to adversely affect the value of the output of the system.

If such a disturbance is generated within the system itself, it is called an internal disturbance.

The system generated outside the system acting a) a extra input to the system in addition to its normal input, affecting the output adversely is called the external disturbance.

Automatic control system: An automatic control system is one that maintains the actual output at the desired value in the presence of disturbance.
Process control system: An automatic control system in which the output is a variable such as, temperature, i pressure, flow, liquid level is called a process control system.
Transducer: A transducer is a device which converts a signal from one form to another usually, the transclucers applied in control systems convert a signal from any form! to electrical form. This is because the electrical signal can be handled, amplified and transmitted easily.

Classification of control systems:

1. Linear and non-linear control systems:

For linear systems, the principle of superposition applies. Those systems for which this principle does not apply are non-linear systems. Most reallife control system have non-lineor characteristic).
2. Time invariant and Time varying control systems:

A time invariant control system is one whose parameters do not vary with time. A time varying control system is a system in which one or more parameters vary with time. The response depends on the time at which an input is applied.
3. Continuous time and Discrete time control systems:

In a continuous time control system, all system variables are functions of a continuous time ' t '. A discrete time control system involves one or more variables that ore known only at
discrete instance of time.
4. Single input single output and Multiple input Multiple output control systems:

A system may have one input and one output, such a system is called a single input, single output control system: some systems may have multiple inputs and multiple outputs.
5. Lumped - parameter and Distributed parameter control systems:
control systems that can be described by ordinary differential equations are lumped parameter control systems, where as distributed -parameter control systems are those that may be described by partial differential equations.
b. Deterministic and stochastic control systems:

A control system is determinifitic if the response to input is predictable and repeatable. If not, the control system is a stochastic control system.

Control system configurations:
There are two major configurations of control systems
(1) Open loop system
(2) Closed Loop system.

1. Open loop system:

A system in which the control system action is totally inclependent of the output of the system is called a) open loop system.
Reference
 controlled output $c(t)$ input $R(t)$

$$
u(t)=\text { Actuating signal }
$$

Reference input $R(t)$ is applied to the controller which generates the actuating signal $u(t)$ required to control the process. which is to be controlled. Process is giving out the necessary desired controlled output $c(t)$.
Advantages of open wop system:
(1) They are simple in construction and design.
(2) They are economical.
(3) Easy for maintenance.
(4) Not much problems of stability.
(5) Convenient to use when output is difficult to measure.

Disadvantages of openloop system:
(1) Inaccurate and unrediable because accurray is dependent on accuracy of calibration.
(2) Inaccurate results are obtained with parameter variation?, internal disturbances.
(3) To maintain quality and accuracy recalibration of the controller is necessary for time to time.
2. Closed loop control system:

A system in which the controlling action is somehow dependent on the output is called closed loop control system. such system user a feedback.

A port of the output is feedback or connected to the input ie feedback is that property of a system which permits the output to be compared with the reference input so that appropriate controlling action can be decided.

$R(t)$ - Reference input
$c(t)$ - controlled output
B - Feedback signal
E - Error signal.
There are two types of feedback
(1.) Positive feedback (Regenerative feedback):

When output is connected to input with ' f ' sign then it is called as positive feedback.

(2) Negative feedback (Degenerative feedback):

When output is connected to input with i- sign, then it is called negative feedback.

Advantages of closed loop system:
(1) Accuracy is very high as any error arising is corrected.
(2) It sonses. changes in output due to environmental or parametric changes or internal disturbances.
(3) Reduces effect of non-linoorrity.
(4) Increases Bandwidth.

Disadvantages of closed wop system:
(1) Complicated in design.
(2) Maintenance is costlier.
(3) System may become unstable.

Effect of Feedback:
When feedback is given, the error between system input and output is reduced. However, improvement of error is not only advantage.

The effects of feedback are
(1) Gain is reduced by a factor $\frac{G}{1 \pm G H}$.
(2) Reduction of parameter variation by a factor $1 \pm G \mathrm{H}$.
(3) Improvement in sensitivity.
(4) Stability may be affected.
(5) Linearity of system improves.
(6) System bandwidth increases.

Comparision between open loop and closed loop system:

1. Any change in output has no effect on the input ie. Feedback does not exists.
2. Output is difficult to measure.
3. Feedback element is absent
4. Error defector is absent.
5. It is inaccurate and unreliable.
6. Highly sensitive to the disturbance.
7. Highly sensitive to the environmental changes.
8. Simple in construction and cheap.
9. These systems are nonlinear.
10. Eg: automatic washing machine, traffic light etc.
closed loop system.
11. Changes in output, affects the input which is possible by the use of feedback.
12. Output measurement is necessary.
13. Feedback element is present.
14. Error defector is necessary.
15. Highly accurate and reliable.
16. Less sensitive to the disturbance.
17. Less sensitive to the environmental change.
18. Complex to design and hence costly.
19. These system are linear.
20. Eg: $A C$, control systems. for temperature, pressure etc.

Standard Test Signals :
(step, Ramp, parabolic, impulse function)
The standard test signals are impulse, step, ramp and parabolic. These signals are used to know the performance of the control systems using time response of the output.

1. Unit impulse signal:

A unit impulse signal, $\delta(t)$ is defined as

$$
\delta(t)=0 \text { for } t \neq 0
$$

$$
\text { and } \int_{0}^{0^{t}} \delta(t) d t=1
$$

So, unit impulse signal exists only at ' t ' is equal to zero. The area of this signal under small interval of time around ' t ' is equal to zero is one. The value of unit impulse signal is zero for all other values of ' t '.
2. Unit step signal:

A unit step signal, $u(t)$ is defined ar

$$
\begin{aligned}
u(t) & =1 ; t \geqslant 0 \\
& =0 ; t<0
\end{aligned}
$$

So, unit step signal exists
 for all values of ' t ' including zero. And its value is one during this interval. The value of unit step signal is: zero for all negative values of ' t '.
3. Unit Ramp Signal:

A unit ramp signal, $\gamma(t)$ is defined as

$$
\begin{aligned}
\gamma(t) & =t ; t \geqslant 0 \\
& =0 ; t<0
\end{aligned}
$$

We can write unit ramp signal $r(t)$ in terms of unit step signal. $u(t)$ as

$$
\gamma(t)=t \cdot u(t)
$$

So, the unit ramp signal exists for all positive valuer of ' t ' including zero. And its value increases linearly with respect to ' t ' during this interval. The value of unit ramp signal is zero for all negative values of 't'.
4. Unit parabolic signal:

A unit parabolic signal , $P(t)$ is defined as

$$
\begin{aligned}
P(t) & =\frac{t^{2}}{2} ; t \geqslant 0 \\
& =0 ; t<0
\end{aligned}
$$

We can write unit parabolic signal $p(t)$ in terms of
 the unit step signal $u(t)$ as

$$
p(t)=\frac{t^{2}}{2} u(t)
$$

So, the unit parabolic signal exists for all the positive values of 't' including zero. And its value increases non-lineorly with. respect to ' t ' during this interval.

The value of the unit parabolic signal is zero for all negative values of ' t '.
Servomechanism :
A servomechanism is a control system in which the output is a mechanical position, or the rate of change of position or rate of change of velocity, ie. velocity or acceleration.

A robot, automatic positioning of anti-aircraft gun, radar, antenna are some examples of servomechanism Regulators (Regulating systems):

Regulating system is a feedback control system in which for a present value of the reference input, the output is kept constant at its desired value.

A regulating system differ from a serromecharisn in that the main function of a regulator is unceally to maintains a constant output for a fixed input, while that of a servomechanism is mostly to cause the output of a system to follow the varying input.

A temperature regulator, speed governor are examples of regulating system.

Assignment- -1

1. Define the following terms
(i) system
(ii) Control system
(iii) Distance.
2. Define open loop and closed loop control system.
3. Draw the block diagram of a closed loop system and indicate the following on it.
(i) Reference input
(ii) controlled output
(iii) Feedback signal
(iv) error signal.
4. What is feedback? Explain the effect e of. feedback.
5. Explain standard test signals.
6. Explain the following terms giving. suitable examples
(i) Servomechanism
(ii) Regulators

Chapter -2
Transfer Functions um
Syllabus:
Transfer function of a system and impulse response, properties, Advantages, disadvantages of transfer function, poles and zeros of transfer function, representation of poles and zeros on the s-plane, simple problems of transfer function of networks.

The transfer function is defined as the ratio of the laplace transform of the output response to the laplace transform of the input, provided that all the initial conditions are zero.

If $G(s)$ is the transfer function of the system, we can write mathematically

$$
\begin{aligned}
& G(s)=\left.\frac{\text { laplace transform of output }}{\text { laplace transform of input }}\right|^{\text {all initial }} \begin{array}{l}
\text { conditions are } \\
\text { zero. }
\end{array} \\
& G(s)=\frac{C(s)}{R(s)} \left\lvert\, \begin{array}{l}
\text { all initial conditions } \\
\text { are zero. }
\end{array}\right.
\end{aligned}
$$

The transfer function can be represented as a block diagram as shown above, with the input on the left and output on the right side and the system transfer function is inside the block.

The input may be regarded as the "cause" and the output as the 'effect'. The block diagram is "unidirectional" since the effect cannot produce the cause.

Procedure for finding transfer functions of electric Networks:

The following procedure is used to find transfer function of an electric network:
(1) Draw the given network in the s-domain with each inductionce L replaced by $S L$ and each capacitance by $\frac{1}{S C}$
(2) Replace all sources and time variables with their laplace transforms. That is replace $v(t)$ and $i(t)$ by their laplace transferms $V(s)$ and $I(s)$ respectively.
(3) Use KCL, KVL, mesh analysis, node analysis to write network equations.
(4) Solve the simultaneous equations for the output.
(5) Form the transfer function:

Eg-1: Determine the transfer function of the phase lag network.

Ans: The given network in s-domain is

By applying kVL in the left hand mesh

$$
\begin{aligned}
V_{i}(s) & =R_{1} I(s)+R_{2} I(s)+\frac{1}{s C} I(s) \\
& =\left[R_{1}+R_{2}+\frac{1}{s C}\right] I(s) \\
& =\left[\frac{\left(R_{1}+R_{2}\right) s C+1}{s C}\right] I(s)
\end{aligned}
$$

By applying kv in the right hand mesh

$$
\begin{aligned}
V_{0}(s) & =R_{2} I(s)+\frac{1}{s C} I(s) \\
& =\left[\frac{R_{2} s C+1}{s C}\right] I(s)
\end{aligned}
$$

Therefore the transfer function is given by

$$
\begin{aligned}
\frac{v_{0}(S)}{V_{i}(s)} & =\frac{\left[\frac{R_{2} S C+1}{s C}\right] I(s)}{\left[\frac{\left(R_{1}+R_{2}\right) s C+1}{s C}\right]} I(s) \\
\Rightarrow & \frac{v_{0}(s)}{v_{i}(s)}=\frac{s R_{2} C+1}{\left(R_{1}+R_{2}\right) s C+1}
\end{aligned}
$$

$$
\Rightarrow \frac{V_{0}(s)}{V_{i}(s)}=\frac{1+T_{1} s}{1+T_{2} s}
$$

Where

$$
\begin{aligned}
& T_{1}=R_{2} C \\
& T_{2}=\left(R_{1}+R_{2}\right) C
\end{aligned}
$$

Then the block diagram representation is

Eg: 2 Determine the transfer function for the simple lag network assuming no external load.

Ans: The S-domain network is

Applying KVL in the left-hand mesh of

$$
v_{i}(s)=R I(s)+\frac{1}{s c} I(s)
$$

By applying KVL in the right -hand mesh

$$
V_{0}(s)=\frac{1}{s c} I(s)
$$

Therefore,

$$
\text { fore, } \begin{aligned}
& \frac{V_{0}(s)}{V_{i}(S)}=\frac{\frac{1}{s C} I(s)}{\left(R+\frac{1}{s C}\right) I(s)} \\
& \Rightarrow \frac{V_{0}(s)}{V_{i}(s)}=\frac{1 / g C}{\frac{R_{s} C+1}{s C}} \\
& \Rightarrow \frac{V_{0}(s)}{V_{i}(s)}=\frac{1}{R_{s} C+1}
\end{aligned}
$$

Eg: 3 Determine the transfer function of the given network

Ans:

In the transformed network

$$
\begin{aligned}
z_{1}(s) & =R_{1} \| \frac{1}{s C_{1}} \\
& =\frac{R_{1} \cdot \frac{1}{s C_{1}}}{R_{1}+\frac{1}{s C}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{R_{1} / s C_{1}}{\frac{S R_{1} C_{1}+1}{s C_{1}}} \\
& =\frac{R_{1}}{S R_{1} C_{1}+1} \\
z_{2}(s) & =R_{2}
\end{aligned}
$$

Then the equivalent circuit is

Let $I(s)$ be the mesh current
By applying KVL in the left hand mesh

$$
\begin{aligned}
V_{1}(s) & =z_{1}(s) I(s)+z_{2}(s) I(s) \\
& =\frac{R_{1}}{s R_{1} C_{1}+1} I(s)+R_{2} I(s) \\
& =\left[\frac{R_{1}}{S R_{1} C_{1}+1}+R_{2}\right] I(s)
\end{aligned}
$$

By applying KVL in the right hand mesh

$$
V_{0}(s)=R_{2} I(s)
$$

Transfer Function,

$$
\begin{aligned}
& \frac{V_{0}(S)}{V_{i}(s)}=\frac{R_{2} I(s)}{\left[\frac{R_{1}}{S R_{1} C_{1}+1}+R_{2}\right] I(S)} \\
\Rightarrow & \frac{V_{0}(S)}{V_{i}(S)}=\frac{R_{2}}{\frac{R_{1}+R_{2}\left(S R_{1} C_{1}+1\right)}{S R_{1} C_{1}+1}} \\
\Rightarrow & \frac{V_{0}(S)}{V_{i}(S)}=\frac{R_{2}\left(1+S R_{1} C_{1}\right)}{R_{1}+R_{2}+S R_{1} R_{2} C_{1}}
\end{aligned}
$$

Eg: 4 Determine the transfer function $\frac{V_{0}(S)}{V_{i}(S)}$ of the $R C$ network of the lag-lead compensator shown below.

Ans:

(The transformed network)

By applying KVL in the left hand mesh

$$
\begin{aligned}
V_{i}(s) & =\left[\left(R_{1} \| \frac{1}{s C_{1}}\right)+\left(R_{2}+\frac{1}{s C_{2}}\right)\right] I(s) \\
& =\left[\frac{\frac{R_{1}}{s C_{1}}}{R_{1}+\frac{1}{s C_{1}}}+R_{2}+\frac{1}{s C_{2}}\right] I(s) \\
& =\left[\frac{R_{1}}{s R_{1} C_{1}+1}+R_{2}+\frac{1}{s C_{2}}\right] I(s)
\end{aligned}
$$

By applying KVL in the right hand mesh

$$
v_{0}(s)=\left[R_{2}+\frac{1}{s \cdot C_{2}}\right] I(s)
$$

Therefore,

$$
\begin{aligned}
\frac{v_{0}(s)}{\text { vic) }} & =\left(R_{2}+\frac{1}{s C_{2}}\right) \div\left[\frac{R_{1}}{s R_{1} C_{1}+1}+R_{2}+\frac{1}{s C_{2}}\right] \\
& =\frac{s R_{2} C_{2}+1}{s C_{2}} \div \frac{R_{1} C_{2} s+R_{2} C_{2} s+R_{1} R_{2} C_{1} C_{2} s^{2}+1+R_{1} C_{1} s}{\left(R_{1} C_{1} s+1\right) s C_{2}} \\
& =\frac{R_{2} C_{2} s+1}{s C_{2}} \times \frac{\left(R_{1} C_{1} s+1\right) s C_{2}}{R_{1} C_{2} s+R_{2} C_{2} s+R_{1} R_{2} C_{1} C_{2} s^{2}+1+R_{1} C_{1} s} \\
& =\frac{\left(R_{1} C_{1} s+1\right)\left(R_{2} C_{2} s+1\right)}{R_{1} R_{2} C_{1} C_{2} s^{2}+\left(R_{1} C_{1}+R_{2} C_{2}+R_{1} C_{2}\right) s+1}
\end{aligned}
$$

1, tg:5 Determine the transfer function of the system

Ans:

(The transformed network)
By applying KVL in the left hand mesh

$$
v_{i}^{\prime}(s)=S\left[R+L s+\frac{1}{c_{s}}\right] I(s)
$$

By applying KVL in the right hand mesh

$$
v_{0}(s)=\left[\frac{1}{c_{s}}\right] I(s)
$$

Then the transfer function is

$$
\begin{aligned}
\frac{V_{0}(s)}{V_{i}(s)} & =\frac{[1 / c s] I(s)}{\left[\begin{array}{c}
\left.R+L s+\frac{1}{C s}\right] I(s) \\
1 / C s
\end{array}\right.} \\
& =\frac{R C s+L C s^{2}+1}{C s}
\end{aligned}
$$

Properties of Transfer function:
(1) zero initial condition.
(2) It is same as laplace transform of its impulse response
(3) Replacing ' s ' by $\frac{d}{d t}$ in the tracrifor function, the differential equation. can be obtained.
(4) Poles and zeros can be obtainod from the transfer function.
(5) Stability can be known.
(6) Can be applicable to linear system only.

Advantages of Transfer function:
(1) It is a mathematical model and gain of the system.
(2) Replacing 's by $\frac{d}{d t}$ in the transfer function, the differential equation can be obtained.
(3) Poles and zens can be obtained from the transfer function.
(4) Stability can be known.
(5) Impulse response can be found.

Disadvantages of Transfer function:
(1) Applicable only to linear system.
(2) Not applicable if initial condition cannot be neglected.
(3) It gives no information about the actual structure of a physical system.

Impulse Response:
In a control system, when there is a single ip of unit impulse function, then there will be some response of the linear system.

$$
\begin{aligned}
& C(s)=\frac{(1 s)}{R(s)} \\
& R(s)=\alpha[\delta(t)]=1
\end{aligned}
$$

The laplace Transform of the ip will be $R(s)=1$

$$
\begin{aligned}
C(s) & =G(s) \cdot R(s) \\
\Rightarrow C(s) & =G(s) \cdot 1 \\
\Rightarrow C(s) & =G(s)
\end{aligned}
$$

The Laplace transform of the system output will be simply the "Transfer function" of the system.

Taking laplace inverse

$$
\alpha^{-1} \rightarrow c(t)=G(t)
$$

Here $g(t)$ will be impulse of the linear system. This is called Weighing Function. Hence, Laplace Transfer of the impulse response is the Transfer function of the system itself.

Poles and zeroes of Transfer Function:

$$
G(s)=\frac{k\left(s-z_{1}\right)\left(s-z_{2}\right) \cdots \cdot \cdot\left(s-z_{n}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots\left(s-p_{n}\right)}
$$

Where, k is known as gain factor of the tramper function.
$z_{1}, z_{2}, \ldots z_{m}$ ore called zeros.
$p_{1}, P_{2}, \ldots p_{n}$ are called poles.
Number of poles ' n ' will always be greater than the number of zens ' m '.
Eg:1 Obtain the pole-zero map of the following transfer function.

$$
q(s)=\frac{(s-2)(s+2+j 4)(s+2-j 4)}{(s-3)(s-4)(s-5)(s+1+5 j)(s+1-j 5)}
$$

Ans: Poles and zeros of the transfer function are zeros: $s=2, s=-2-j 4, s=-2+j 4$
Poles $S=3, s=4, s=5, s=-1-j 5, s=-1+j 5$
where as, poler is denoted by ' x ' and zen is denoted by ' O '.

Eg:2 Obtain the pole-zero map of the following transfer function.

$$
G(s)=\frac{(s+1)(s+2)}{(s+3)(s+4)(s+5)(s+2-4 j)(s+2+4 j)}
$$

Ans: Poles and zeros of a transfer function are
zeros: -1,-2
poles: $-3,-4,-5,-2+4 j,-2-4 j$
Where a, poles is denoted by ' x ' and zeros are denoted by 0 .

Eg: 3 Obtain the pole-zero map of the following transfer function.

$$
G(s)=\frac{(s-2)(s+5)(s+8)}{s(s+1)(s+6)(s+9)(s+1-j 3)(s+1+j 3)}
$$

Ans: Poles and zeros of the transfer function are zeros: $2,-5,-8$
poles: $0,-1,-6,-9,-1+j 3,-1-j 3$

Where, poler is denoted by ' x ' and zeros is denoted by 'o'.

This is the pole-zen map of the transfer function on s-plane.
Assignment - 2
Assignment- 2 inn

1. What is Transfer function?
2. Write the procedure for finding transfer function of an electric network.
3. Determine the transfer function of the network

4. Write Properties, advantages and disadvantages of transfer function.
5. Obtain the pole-zero map of the following transfer function

$$
G(s)=\frac{(s-2)(s+5)(s+8)}{s(s+1)(s+6)(s+9)(s+1-j 3)(s+1+j 3)}
$$

chapter -3
Control system components \& mathematical modelling of physical system
Syllabus:
Components of control system, Potentiometer, synchros, Diode modulator \& demodulator, $D C$ motors, $A C$ servomotors, Modelling of Electrical systems (R, L, C, Analogous Systerns)

A physical system is a collection of physical objects connected together to serve an objective. An idealized physical system is called a physical model. Once a physical model is obtained, the next step is to obtain mathematical model. When a mathematical model is solved for various, input conditions, the result represents the dynamic behaviour of the system.
Components of control system:
The components of automatic control systems are
(1) Error detector
(2) Amplifier and controller
(3) Actuator
(4) Plant
(5) Sensor of feedback system.

Potentiometer:
A potentiometer is defined as 3-terminal variable resistor in which the resistance is manually varied to control the flow of electric current. A potentiometer acts as an adjustable voltage divider.

A potentiometer is a passive electronic component. Potentiometers work by varying the position of a sliding contact across a uniform resistance. is applied across the whole length of the resistor
and the output voltage is the voltage drop between the fixed and sliding contact.

A potentiometer has the two terminals of the input source fixed to the end of the resistor. To adjust the output voltage the sliding contact gets moved along the resistor on the output side.

There are two main types of potentiometers:
(1) Rotary potentiometer
(2) Linear. potentiometer.

Although the basic constructional features of these potentiometers vary, the working principle of both of these types of potentiometers is the same.
\rightarrow These are types of $D C$ potentiometers.
(1) Rotary Potentiometers:

The rotary type potentiometers are used for obtaining adjustable supply voltage to a port of electronic circuits and electrical circuits.

The volume controller of a radio transistor is an example of a rotary potentiometer where the rotary knob of the potentiometer controls the supply to the amplifier.

This type of potentiometer has two terminal contacts between which a uniform resistance is placed in a semi-circular pattern. The device also has a middle terminal which is connected to the resistance through a sliding contact attached with a rotary knob. By rotating the knob one cain move the sliding contact on the semicircular resistance. The voltage is taken between a resistance end contact and the sliding contact.

There are many more uses of rotary type potentiometer where smooth voltage control is required.

2 Linear Potentiometers:
The linear potentiometer is basically the same but the only difference is that here instead of rotary movement the sliding contact gets moved on the resistor linearly.

Here two ends of a straight resistor are connected across the source voltage. A sliding contact can be slice on the resistor through a track attached along with the
resistor. The terminal connected to the sliding is connected to one end of the output circuit and one of the terminals of the resistor is connected to the other end of the output circuit.

This is commonly used in the equalizer of music and sound mixing systems.

Synchros:
The synchros are the type of transducer which transforms the angular position of the shaft into an electric signal: It is used as an error detector and a) a rotary position sensed.

The error occurs in the system because of the misalignment of the shaft: The transmitter and the control tramfermer are the main parts of the synchro.

The synchro system is of two types. They are

1. Control type synchro
2. Torque Transmission Type synchro

The Torque transmission type synchros hay small output torque, and hence they are used for running the very light load like a pointer.

The control type synchro is used for driving the large loads. The control synchros is used for error detection in positional control system.

Their system consists of two units. They are

1. Synchro Transmitter
2. Synchro Receiver.

The synchro always work with these two parts.

1. Synchros Transmitter: \qquad
The construction of synchro transmitter is similar to three phase alternator. The stator of the synchros is made of steel for reducing the iron losses.

The starter is slotted for housing the three phase windings. The axis of the stator winding is kept 120° apart from each other.

(constructional Feature of synchros Transmitter).
The $A C$ voltage is applied to the rotor of the transmitter and it is expressed as

$$
V_{\gamma}=\sqrt{2} \sin \omega_{c} t
$$

where,
$V_{r} \rightarrow$ r.m.s value of rotor voltage
$\omega_{c} \rightarrow$ carrier frequency.

The coils of the stator windings are connected on star. The rotor of the synchros is a dumbbell in shape, and a concentric call is wound on it. The AC voltage is applied to the rotor with the help of slip rings.

(Synchro transmitter)
Consider the voltage is applied to the rotor of the transmitter. The voltage applied to the rotor induces the magnetizing current and an alternating flux along its axis. The voltage is induced in the stator winding) because of the mutual induction between the rotor and stator flux. The flux linked in the stator winding is equal to the cosine of the angle between the rotor and stator. The voltage is induced in the stator winding.

Diode Modulator and Demodulator:-
Modulation is defined as the process of superimposing a low frequency signal on a high frequency carrier signal.

A diode modulation in which two diodes have been used. A sinusoidal supply of frequency ω_{c} was used here to excite the primary of the contre-tapped transformer.
The centre point of the secondary winding of the transformer is grounded and hence the phase shift of the emfs included in the two halves of secondary will be 180°.

Sinusoidal excitation voltage
The end s_{2} is positive while the end s_{1} is negative during the positive half cycle of the supply voltage. which leads the diode D_{1} and D_{2} to be forward biased. Hence, a current circulates in the secondary of transformer.

The voltage between point B and ground becomes zero when the moving contact of potentiometer. is located exactly at the midpoint. This is valid strictly under the assumption that the diodes are identical and the resistances in series with the diode are identical. Therefore, the output voltage becomes zero.

The end S_{2} becomes negative while the end S_{1} becomes positive during the negative half cycle of the supply voltage. The diocles D_{1} and D_{2} becomes reverse. biased. The point B is disconnected from the transforrres and it is at the same potential of A. Therefore, the output voltage is equal to the $D C$ voltage applied between point A and ground.

(Diode Demodulator)

A diode demodulator in which the excitation voltage is alternating having frequency same as that of input signal. The input signal hay been applied to the primary of the transformer $\left(T_{1}\right)$. The input voltage is assumed to be in phase with the excitation voltage. During positive half cycle, the diode D_{1} and D_{2} will conduct due to the nature of the polarities of the induced emfs in the secondary of T_{2}.

The available voltage across D_{1} is more than that of D_{2} because there exists an additive secondary voltage in the closed path of D_{1} and the subtractive voltage in the closed path of D_{2}. Hence. the diode D_{1} conducts move current than D_{2}, resulting in greatcharge storage in C_{1} compared to that of C_{2}.

During the negative half cycle, the diode D_{1} and D_{2} will be reverse biased because the polerity of the secondary emfs is exactly opposite to the polarity. The capacitor c_{1} and c_{2} in this will function a) filter. and hence the direct output voltage will be maintained constant. The excitation voltage in the secondary of T_{1} must be greater than the voltage induced in one half of secondary of T_{1} to make the operation successful.

The diode D_{2} conducts more current than the diode D_{1} if the alternating voltage applied at the input is in phase opposition with the excitation voltage. The capacitor maintain the same direct voltage levels during the reactive half cycles.

DC Motors:-
A DC motor is an electrical machine that transforms electrical energy into mechanical energy, by creating a magnetic field that is powered by direct current.

When a DC Motor is powered, a magnetic field is created in its stator. The field attracts and repels magnects on the rotor; this causer the rotor to rotate. To keep the rotor continually rotating, the commutator that is attached to brushes. connected to the power source supply current to the motors wire windings.

One of the reasons $D C$ motors are preferred over other types of motors is their ability to precision control their speed, which is a necessity for inclustrial machinery.

DC motors are able to immediately start, stop, and reverse, which is an essential factor for controlling the operation of production equipment. There core two types of $D C$ Motors.
(1) Armature control
(2) Field control.

Comparision between. Armature control and Field control DC Motor:

Armature Control
\rightarrow In armature control large current is required as the source has to meet the full power requirement of the motor.
\rightarrow Time constant is less.
\rightarrow Efficiency is very high.

Field control
\rightarrow in field control the requirement of current is small.
\rightarrow Time constant will be more.
\rightarrow Efficiency is low
\rightarrow It is easy to provide constant field current.
\rightarrow Speed of response of the motor to change in current is fast.
\rightarrow It is difficult to provide constant field current.
\rightarrow speed of response to change in current is low.

Advantages of DC Motor:-
(i) It has linear characteristic y.
(ii) It is used for large power applications.
(iii) It is easier to control.

Disadvantages of $D C$ Motor :-
(i) It has low torque to volume ratio.
(ii) It has low torque to inertia ratio.

AC servomotors :-
A two phase servomotor is commonly used in feedback control systems. In servo applications, an induction motor is required to produce rapid acceleration from stand still.

control winding

main winding or reference winding.

Constructional Features:
\rightarrow Squirrel cage rotor with Cu or AI conductor.
\rightarrow It has high rotor resistance.
\rightarrow small diameter to length ratio to minimize inertia.
\rightarrow Two stator windings in space quadrature l One is. called reference winding and the other is control winding)
\rightarrow The two voltages to stator windings must derived from same source.

Principle of operation:
(i) The two applied $A C$ voltage to stators with a phase difference produce a rotating flux.
(ii) As this moving flux sweeps over the rotor conductors, small emf is induced in Rotor. Rotor being short circuited. current will flow and this current interacts with rotating flux to produce a torque in the rotor. This torque causey the rotor to turn so that it chases the rotating magnetic flux.

For induction motor in high power applications, rotor resistance is low in order to obtain maximum torque.
Advantages of $A C$ servomotors:-
(i) Lower cost
(ii) less weight and inertia
(iii) Higher efficiency.
(iv) Fewer maintenance requirements.

Disadvantages of AC servomotors:
(i) It has non-linear characteristics.
(ii) It is used for low power applications
(iii) Difficult for speed control and positioning.

Comparision between A.C. and D.C. Servomotor:

AC. Servomotor
Mininvomotor
(1) Low power output.
(2) Efficiency is less.
(3) No brushes and slip rings hence maintenance free.
(4) No radio frequency noise.
(5) Smooth operation
DC. Servomotor
(1) High power output.
(2) Efficiency is high.
(3) Frequent maintenance required.
(4) Brushes produce ratio $y_{\text {frequency }}$
noise.
(b) Noisy operation.

Application of servomotors:
(1) Radars.
(2) Electromechanical actuators
(3) Computers.
(4) Machine tools
(5) Tracking and guided system
(b) Process controllers.
(7) Robots:

Modelling of Electrical Systems (R,L,C, Analogous systems):-
Analogous Systems :-
The circuit which represents the systems for which differential equations are similar in form are called analogous circuits.

The corresponding variables and parameters in two circuit represented by equations of the same form are called analogous.

Mechanical systems can be represented by electric networks or vice-versa either by force voltage analogy or force -current analogy.

Components of an electrical system:
There are three basic elements in an electrical system.
(i) resistor (R)
(ii) Inductor (L)
(iii) Capacitor (C)

Electrical systems are of two types.
ii) voltage source electrical system
(ii) current source electrical system.
(i) voltage source electrical system:
\rightarrow If 'i' is the current through a resistor and ' r ' is' the voltage drop in it, then,

$$
v=R i
$$

\rightarrow If ' i ' is the current through an inductor and ' v ' is the voltage drop developed in it, then

$$
v=L \frac{d i}{d t}
$$

\rightarrow If (i) is the current through a capacitor and ' v ' is the voltage developed in it, then

$$
v=\frac{1}{c} \int i d t
$$

(ii) current source electrical system:
\rightarrow If ' i ' is the current through a resistor and ' v ' is the voltage drop in-it, then

$$
i=\frac{V}{R}
$$

\rightarrow If i is the current through an inductor and ' v ' is the voltage developed in it, then

$$
i=\frac{1}{L} J v d t
$$

\rightarrow If C_{i} ' is the current through a capacitor and ' v ' is the voltage developed in it, then

$$
i=c \frac{d v}{d t}
$$

Series RLC circuit:
mun mun mums.
This is a series RLC circuit.

By applying KVL,

$$
\begin{aligned}
V(t) & =V_{R}+V_{L}+V_{c} \\
& =R_{i}+L \frac{d i}{d t}+\frac{1}{c} \int i d t \\
& =R_{i}+L \frac{d i}{d t}+\frac{1}{c} \int \frac{d q}{d t} d t \\
& =R_{i}+L \frac{d i}{d t}+\frac{1}{c} \times q \\
\Rightarrow v(t) & =R_{i}+L \frac{d i}{d t}+\frac{q}{c}
\end{aligned}
$$

Parallel RLC circuit:
This is a parallel RLE circuit.
By applying KCL

$$
\begin{aligned}
i(t) & =i_{R}+i_{L}+i_{c} \\
& =\frac{v}{R}+\frac{1}{L} J v d t+c \frac{d v}{d t}
\end{aligned}
$$

If ϕ is the flux, then

$$
v=\frac{d \phi}{d t}
$$

and $\quad \phi=\int v d t$
and $\frac{d v}{d t}=\frac{d}{d t} \times \frac{d \phi}{d t}$.

$$
=\frac{d^{2} \phi}{d t^{2}}
$$

By substituting the value, we get

$$
\begin{aligned}
i(t) & =\frac{1}{R} \frac{d \phi}{d t}+\frac{1}{L} \phi+c \frac{d^{2} \phi}{d t^{2}} \\
\Rightarrow i(t) & =c \frac{d^{2} \phi}{d t^{2}}+\frac{1}{R} \frac{d \phi}{d t}+\frac{1}{L} \phi
\end{aligned}
$$

Problem-1: Find system transfer function between the inductance, current to the source current in the following RL circuit.
Ans: voltage across the resistance,

$$
e(t)=i_{R} R
$$

$$
\begin{aligned}
& e(t)=i_{R} R \\
\Rightarrow & i_{R}=\frac{e(t)}{R}
\end{aligned}
$$

Voltage across the inductance

$$
\begin{aligned}
& e(t) \\
&=L \frac{d i_{L}}{d t} \\
& \Rightarrow \quad i_{L}=\frac{1}{L} \int e(t) d t
\end{aligned}
$$

Total current $i_{a}=i_{R}+i_{L}$

$$
=\frac{e(t)}{R}+\frac{1}{L} \int e(t) d t
$$

Laplace transform of the current source

$$
I_{a}(s)=E(s)\left(\frac{1}{R}+\frac{1}{L s}\right) \text { and } I_{L}(s)=\frac{E(s)}{L s}
$$

Transfer function between the inductance current to the source current is $\frac{I_{L}(s)}{I_{a}(s)}$

$$
\begin{aligned}
=\frac{E(s) / L_{s}}{E(s)\left(\frac{1}{R}+\frac{1}{L_{s}}\right)} & =\frac{E / s)}{L_{s}} \times \frac{1}{E(s)\left(\frac{1}{R}+\frac{1}{L s}\right)} \\
& =\frac{1}{\frac{L s}{R}+\frac{L s}{L s}} \\
& =\frac{1}{\frac{L}{R} s+1}=\frac{1}{\tau s+1} \quad\left(\because \tau=\frac{L}{R}\right.
\end{aligned}
$$

is the time constant.)
Problem-2: Find system transfer function between yuartiona capacitance voltage to the source voltage in the following RLC circuit as shown in the figure.

Ans: voltage across the resistance,

$$
e_{R}(t)=i R
$$

voltage across the inductance

$$
e_{L}(t)=L \frac{d i}{d t}
$$

voltage across the capacitance,

$$
e_{c}(t)=\frac{1}{c} \int i d t
$$

Total voltage $e(t)=i R+L \frac{d i}{d t}+\frac{1}{c} \int i d t$
laplace transform of the voltage source

$$
E(s)=I(s)\left(R+L_{s}+\frac{1}{c s}\right)
$$

Transfer function between capacitance voltage and source

$$
=\frac{1}{R C S+L C S^{2}+1}
$$

Assignment -3
mung inventing

1. What are the components of control system?
2. Define potentiometer. Explain its types.
3. Define synchros.
4. Define DC Motor. Differentiate between Armature control and Field control $D C$ Motor.
5. Explain the construction and working of $A C$ serromotss.
6. Find system transfer function between the inductance current to the source current in the following RL circuit.

7. Find the system transfer function between capacitance voltage to the source voltage in the following RLC circuit as shown in the figure.

Block Diagram and signal flow graph (SFG)
Syllabus: Defination of Basic elements of a Block diagram, canonical form of closed loop systems, Rules for Block diagram reduction, Procedure for reduction of Block diagram, simple problem for equivalent transfer function, Baric defination in SFG and properties, Mason's Gain formula, steps for solving signal flow graph. simple problems in signal flow graph for network.
Defination of Baric elements of a Block diagram:-
Block Diagram:
Block diagram is the pictorial representation of each system and it makes easier to understand the system. The short hand pictorial representation the cause and response relationship between input and output of a physical system is known as block diagram.

(Block representation of a system)

(Block representation
with gain of a system)

Output: The value of input multiplied by the gain of the system.

$$
\begin{aligned}
& G(s)=\frac{C(s)}{R(s)} \\
& C(s)=G(s) \cdot R(s)
\end{aligned}
$$

where,

$$
\begin{aligned}
& G(s)=\text { Gain } \\
& C(S)=\text { output } \\
& R(S)=\text { input }
\end{aligned}
$$

Arrows :
Block diagrams contain arrows which indicate the unidirectional. Flow of signals in these diagrams.

Summing point : A summing point is a point in a system where two or more signals are added algebraically. A circle with a cross is the symbol that indicates the summing operation. The plus or minus sign at -each arrowhead indicates whether the signal is to be added or subtracted.

Takeoff points:
A takeoff point is the point in a systern from which output signal from a block goes concurrently to other blocks or summing points.

Forward path:
It is the direction of signal flow from input towards output.

Forward path.
Feedback path:
It is the direction of signal flow from output towards input.

Canonical form of closed loop system:
A block diagram in which forward path contains only one block, feedback path having one block and one take off point represents a canonical form of closed loop system.

$$
\cong \xrightarrow{R(s)} \frac{G(s)}{1+G(s)} \cdot(c s)
$$

Where, $R(S)=$ Reference input
$(U)=$ controlled output
$B(s)=$ Feedback signal
$E(s)=$ actuating signal or error signal.
$G(s)=\frac{C(s)}{E(s)}$ is called forward path transfer function
$H(s)=\frac{B(s)}{C(s)}$ is called feedback transfer function. $q(s) . H(S)$ is called loop gain.

The ratio $\frac{C(1)}{R(s)}$ is called the closed loop transfer function or system transfer function.
The transfer function of the simple closed loop system can be deduced as

$$
\begin{aligned}
& C(s)=G(s) \cdot E(s) \\
\Rightarrow & C(s)=G(s) \cdot[R(s)-B(s)] \\
\Rightarrow & C(s)=G(s) \cdot R(s)-G(s) \cdot B(s) \\
\Rightarrow & C(s)=G(s) \cdot R(s)-G(s) \cdot C(s) \cdot H(s) \\
\Rightarrow & C(s)+G(s) \cdot C(s) \cdot H(s)=G(s) \cdot R(s) \\
\Rightarrow & C(s) \cdot[1+G(s) \cdot H(s)]=G(s) \cdot R(s) \\
\Rightarrow & \frac{C(s)}{R(s)}=\frac{G(s) \cdot H(s)]}{1+G(s) \cdot H(s)}
\end{aligned}
$$

where; $\frac{c(s)}{R(s)}$ is the transfer function of the system.
This is valid for negative feedback.
For positive feedback system, the transfer function is

$$
\frac{C(s)}{R(s)}=\frac{G(s)}{1-G(s) \cdot H(s)}
$$

A system with HeS $=1$, is said to be unity feedback. The transfer function with unity negative feedback is given by

$$
\frac{C(s)}{R(s)}=\frac{G(s)}{1+G(s)}
$$

Ruler for Block diagram Reduction:
Rule-1:

equivalent is.

Rule -2:

equivalent is

Rule-3:

equivalent is

Rule-4 (Associative law)

Equivalent is.

Rule-5 (Move take off point after a block)

Equivalent is

Rule -6 (Move take off point before a block)

toquevalent is

Rule-7: Moving summing point after a block.

equivalent is

Rule-8: More summing point before a block.

equivalent is

Rule-9: Move take off point after a summing point

Equivalent is

Rule-10: Move take off point before a summing point.

Equivalent is

Procedure for reduction of Block Diagram:
The following steps are used in block diagram reduction:

1. combine the cascaded blocks in a path.
2. Combine the parallel blocks.
3. If a block diagram consists of many feedback loops, then find the innermost feedback loop.
4. If the innermost feedback loop does not contain any takeoff and/or summing points inside the loop, then reduce it to a single block.
5. If the innermost feedback loop contains any take off and/or summing points inside it, then shift these points. After shifting these points, simplify the innermost wop. to a single block.
6. It is better to shift the takeoff points towards right and summing points towards left.
7. Reduce all other feedback loop.
8. Repeat above steps according to the requirement until one block with input R(S) and output (cb) is obtained.
9. Find the transfer function $\frac{C(s)}{R(s)}$ for the
overall system overall system.
Procedure for reduction of multiple inputs.
10. Consider only one input and set all other inputs to zero.
11. Calculate the output due to the chosen input acting alone.
12. Repeat steps 1 and 2. For each of the remaining? inputs one at a time.
13. Apply the principle of superposition. That is, algebraically add all of the outputs determined in steps 1 to 3 .
This sum is the total output of the system with all inputs acting simultaneously.
Problem-1: Find the transfer function of the closed loop system.

Ans: Step-1 The two series blocks are combined be f the cascading rule.

Step-2 Here, $H(s)=1$

$$
\begin{aligned}
& \frac{G(s)}{R(s)}=\frac{G(s)}{1+G(s) \cdot H(s)} \\
&=\frac{\frac{4}{s(s+1)}}{1+\frac{4}{s(s+1)}} \times 1=\frac{\frac{4}{s(s+1)}}{\frac{s(s+1)+4}{s(s+1)}} \\
&= \frac{4}{s^{2}+s+4}
\end{aligned}
$$

Problem-2: Find $\frac{C(S)}{R(S)}$ of the block diagram.

Ans: step-1 Modify the given block diagram

Step-2 Eliminate the unity feedback loop containing block G_{1}

Step-3 The two cascaded blocks $\left(a_{1}+1\right)$ and a_{2} are combined by the cascading rule.

Step-4 Adding parallel pairs containing $\left(a_{1} a_{2}+a_{2}\right)$, and unity.

The transfer function is given by

$$
\frac{C(s)}{R(s)}=a_{1} a_{2}+a_{2}+1
$$

Problem-3: Find the transfer function of the closed wop system.

Ans. Step-1: Eliminate the inner feedback loop to obtain the block diagram

Step-2: Combine the two series block e into one

The feedback transfer function $H_{2}(s)=1$. Then the transfer function is given by

$$
\frac{L(s)}{R(s)}=\frac{\frac{G_{1}(s) \cdot a_{2}(s)}{\left.1+a_{2}(s) \cdot H+s\right)}}{1+\frac{a_{1}(s) \cdot a_{2}(s)}{1+a_{2}(s) \cdot H(s)} \times 1}
$$

$$
\begin{aligned}
& =\frac{\frac{G_{1}(s) \cdot G_{2}(s)}{1+G_{2}(s) \cdot H(s)}}{\frac{1+G_{2}(s) \cdot H(s)+G_{1}(s) \cdot G_{2}(s)}{1+G_{2}(s) \cdot H(s)}} \\
& =\frac{G_{1}(s) \cdot G_{2}(s)}{1+G_{1}(s) \cdot G_{12}(s)+G_{2}(s) \cdot+1(s)}
\end{aligned}
$$

Problem-4: Find the transfer function for the block diagram.

Ans: Step-1: Move take off point from b to a

Step-2: Combine two blocks c_{1} and c_{2} in parallel to give a single block $G_{1}+G_{2}$

Step-3: Eliminate the feedback loop with a forward gain of 1 and feedback element H to give a single block.

Step -4: The two blocks in cascade are combined to get the block diagram.

The transfer function is given by

$$
\frac{C(1)}{R(s)}=\frac{G_{1}+G_{12}}{1+G_{2} H}
$$

Problem-5: Obtain the transfer function $\frac{C(S)}{R(S)}$ for the block diagram.

Any: Step-1: The takeoff point having block H_{1} is shifted after block a.

Step-2: Replace the two feedback loops by their equivalent blocks.

Step-3: Combine the cascaded blocks

$$
\xrightarrow{R(S)} \frac{G}{1+G \cdot H_{2}} \times \frac{G+H 1}{\not C} \quad((S)
$$

Then the transfer function is

$$
\frac{C(s)}{R(s)}=\frac{9+H_{1}}{1+4 H_{2}}
$$

Problem-6: Find the transfer function of the closed loop

Ans:
Step-1: Simplifying the inner feedback blocks.

Step-2: Shift the takeoff point after the block G_{3}.

Step-3: Combine the two sets of series block to get the diagram.

Step-4: Eliminating the feedback loop, the overall transfer function of the system.

$$
\frac{C(S)}{R(s)}=\frac{\frac{G_{1} G_{2} G_{3}}{1-G_{2} G_{5}}}{1+\frac{G_{1} G_{2} G_{3}}{1-G_{2} G_{5}} \times \frac{G_{4}}{G_{3}}}=\frac{G_{1} G_{2} G_{3}}{1-G_{2} G_{5}+G_{1} G_{2} G_{4}}
$$

Iroblem-t : from the block diagram, determine the overall gain by successive block diagram reduction.

Ans:
Step-1: Eliminating the internal feedback loops to obtain the block diagram.

Step-2: Cascading the two forward blocks into one

Step-3: Removing the feedback path the overall gain of the system is $G_{1}(s) \cdot G_{2}(s)$

$$
\begin{aligned}
\frac{C(s)}{R(s)} & =\frac{\frac{\left[1+G_{1}(s) \cdot G_{1}(s)\right]\left[1+G_{2}(s) \cdot H_{2}(s)\right]}{1+\frac{G_{1}(s) \cdot G_{2}(s)}{\left[1+G_{1}(s) \cdot H_{1}(s)\right]\left[1+G_{2}(s) \cdot H_{2}(s)\right]}} \times H_{3}(s)}{\left[G_{1}(s) \cdot G_{2}(s)\right.} \\
& =\frac{G_{2}(s)}{\left[1+G_{1}(s) \cdot H_{1}(s)\right]\left[1+G_{2}(s) \cdot H_{2}(s)\right]+G_{1}(s) \cdot G_{2}(s) \cdot H_{3}(s)}
\end{aligned}
$$

Problem-8: From the block diagram, determine the relationship between R and C by successive block reduction.

Ans: step-1: blocks, G, and a_{y} are in cascade. They can be combined into a single block with a gain of $G_{1} 9_{4}$.

Step-2: Block C_{2} and C_{13} are in parallel. They can be combined into a single block with a gain of $\left(a_{2}+G_{3}\right)$

Step-3: Eliminating the inner feedback loop containing H_{1}

Step. 4: cascade combine the blocks in cascade

Step-5: Eliminate the only loop and the tramsfor function

$$
\begin{aligned}
& \text { will be } \frac{\frac{G_{1} G_{4}\left(G_{2}+G_{3}\right)}{1-G_{1} G_{4} H_{1}}}{R}=\frac{\frac{a_{1} G_{4}\left(G_{2}+G_{3}\right)}{1-G_{1} G_{4} \cdot H_{1}} \cdot H_{2}}{1-G_{1} G_{4}\left(G_{2}+G_{3}\right)} \\
& \\
& =\frac{1-G_{1} G_{4} H_{1}+H_{1}+a_{1} G_{4} H_{2}\left(G_{2}+a_{3}\right)}{1-G_{1} G_{4}+H 1} \\
& \frac{c}{R}=\frac{G_{1} G_{4}\left(G_{2}+G_{3}\right)}{1-G_{1} G_{4} H_{1}+G_{1} G_{4} H_{2}\left(G_{2}+G_{3}\right)}
\end{aligned}
$$

Problem-9:
Obtain the overall transfer function of the block diagram by block diagram reduction technique.

Ans: Step-1: To eliminate the loop $G_{3} \mathrm{C}_{4} \mathrm{H}_{2}$, we move H_{1} behind block G_{4}.

step-2. Combine G_{3} and G_{4} and eliminate $G_{3}, G_{4} H_{2}$.

Step -3: Blocks G_{2} and $\frac{G_{3} G_{4}}{1-G_{3} G_{4} H_{2}}$ are in cascade.
Their combination gives a block $\frac{G_{2} G_{3} G_{4}}{1-G_{3} G_{4} H_{2}}$.

Step-4: The inner loop containing $\frac{H_{1}}{G_{4}}$ and $\frac{G_{2} G_{3} G_{4}}{1-G_{3} G_{4} H_{2}}$ is eliminated to give

$$
\begin{aligned}
& \frac{a_{22} a_{3} a_{14}}{1-c_{13} a_{4}+t_{2}} \\
& 1+\frac{G_{2} a_{3} C_{4}}{1-a_{3} a_{4} H_{2}} \times \frac{H_{1}}{a_{4}} \\
& =\frac{\frac{G_{2} G_{3} G_{4}}{1-G_{3} G_{4} H_{2}}}{\frac{1-G_{3} G_{4}+H_{2}+G_{2} G_{3}+1}{1-G_{3} G_{4}+F_{2}}} \\
& =\frac{a_{2} G_{3} G_{4}}{1-G_{3} G_{4} H_{2}+a_{2} G_{3}+1}
\end{aligned}
$$

Then the block diagram be

Step-5: Combine the cascaded block and eliminate the feedback loop formed by H_{3}.

Then the closed loop transfer function is giver

$$
\begin{aligned}
\frac{C}{R} & =\frac{\frac{G_{1} G_{2} G_{3} G_{4}}{1-G_{3} G_{4} H_{2}+G_{2} G_{3} H 1}}{1+\frac{G_{1} G_{2} G_{3} G_{4}}{1-G_{3} G_{4} H_{2}+G_{2} G_{3} H 1}} \cdot H_{3} \\
& =\frac{G_{1} G_{2} G_{3} G_{4}}{1-G_{3} G_{4} H_{2}+G_{2} G_{3} H_{1}+G_{1} G_{2} G_{3} G_{4} H_{3}}
\end{aligned}
$$

Problem: 10 Using Block diagram reduction technique for the system, find the input-ou-put relationship.

Ans: Step-1:. Move the block G_{2} to the left of the pick off point and reduce the feedback system consists of l_{3} and H_{3} :-

Step-2: Add the parallel pair consisting of $\frac{1}{G_{2}}$ and unity. Move G_{1} to the right of the summing point.

Step-3: Blocks G_{1} and G_{2} in cascade ore combined into single block $G_{1} G_{12}$ and summing points are.

Step-4: Eliminate the feedback loop

$$
\begin{aligned}
& \frac{G_{1} G_{2}}{1+G_{1} G_{2}\left(\frac{H_{2}}{G_{1}}+H 1\right)} \\
= & \frac{G_{1} G_{2}}{1+G_{1} G_{2}\left(\frac{H_{2}+G_{1}+H_{1}}{G_{1}}\right)}=\frac{G_{1} G_{2}}{1+G_{2} H_{2}+G_{1} G_{2} H_{1}}
\end{aligned}
$$

Step-5: The three cascaded blocks are combined into a single block.

$$
\begin{aligned}
&\left(\frac{G_{1} G_{2}}{1+G_{2} H_{2}+G_{1} G_{2} H_{1}}\right)\left(\frac{1}{G_{2}}+1\right)\left(\frac{G_{3}}{1+G_{3} H_{3}}\right) \\
&=\left(\frac{G_{1} G_{2}}{1+G_{2} H_{2}+G_{1} G_{2} H_{1}}\right)\left(\frac{1+G_{2}}{G_{2}}\right)\left(\frac{G_{3}}{1+G_{3} H_{3}}\right) \\
&= \frac{G_{1} G_{3}\left(1+G_{2}\right)}{\left(1+G_{2} H_{2}+G_{1} G_{2} H_{1}\right)\left(1+G_{3} H_{3}\right)} \\
& \frac{C}{R}=\frac{G_{1} G_{3}\left(1+G_{2}\right)}{\left(1+G_{2} H_{2}+G_{1} G_{2} H_{1}\right)\left(1+G_{3} H_{3}\right)}
\end{aligned}
$$

Signal Flow Graph (SFG)
Signal How graph is a pictorial representation of a system that graphically displays the signal transmission in

Basic Definations of SFG:
(1) Node :- A node is a point representing a variable or signal.
(Q) Branch:- A branch is a directed line segment joining two nodes. The arrow on the branch indicates the direction of signal flow.
(3) Transmittance:- The gain aquired by the signal when it travels from one node to another. Transmittance can be real or complex.
4. Input node (or) source :- It is a node that contains only outgoing branches:
5. Output node (or) sink: - It is a node that contains only incoming branches.
b. Mixed node :- It is a node that has both incoming? and outgoing branches.
7. Path:- A path is a traversal of connected branches in the direction of arrows. The path should not cross a node more than once.
path is of two types.
(1) open path
(2) closed path.

Open path means it starts at one node and ends at other node. If a path started at one node and ended at the same node is called closed path.
8. Forward path:- If path starts at input and ended at outputs is called forward path.
9. Forward path gain:- In the forward path; the combination of gains. is called forward path gain.
10. Individual loop :- If any loop started at a node and ending at the same node without crossing a single node twice that is called as individual leap.
11. Loop gain :- Product of gains of a loop is called
loop gain. loop gain.
12. Non-touching loop:- If the loops does not have common node then those are said to be non-touching loops.

Properties of signal flow graph:-
(1) It is applicable to linear time -invariant systems.
(2) The signal flow is only along the direction of arrows.
(3) The value of voriable at each node is equal to the algebraic sum of all signals entering at that
node.
(4) It is given by Mason's gain formula.
(s) It is not be the unique properties of the system.

Rules of signal flow graph:-
Rule-1: (i)

(ii)

Rule-2:

$$
\begin{array}{ll}
x_{2}=a x_{1} & \Rightarrow x_{3}=a x_{1} \cdot b \\
x_{3}=b x_{2} & \Rightarrow x_{3}=a b x_{1}
\end{array}
$$

Rule -3:

$$
\begin{aligned}
& x_{2}=a x_{1} \quad x_{2}=a x_{1}+b x_{4} \quad \text { so, } x_{2}=(a+b) x_{1} \\
& x_{2}=b x_{4} \\
&=(a+b) x_{1}
\end{aligned}
$$

Rule-4:

$$
\begin{aligned}
x_{3} & =a x_{1}+b x_{2} \\
x_{4} & =c x_{3} \\
& =c\left(a x_{1}+b x_{2}\right) \\
& =a c x_{1}+b c x_{2} .
\end{aligned}
$$

Rule -5:

$$
\begin{aligned}
x_{2} & =a x_{1} \\
x_{3} & =\frac{b}{1-b c} x_{2} \\
x_{3} & =\frac{b}{1-b c} \times a x_{1} \\
& =\frac{a b}{1-b c} x_{1}
\end{aligned}
$$

$$
x_{4} \frac{\frac{a b}{1-b c}}{x_{3}} \Rightarrow x_{3}=\frac{b}{1-b c} \times a x_{1}
$$

Mason's Gain formula:-
Let $R(s) \rightarrow$ input of the system
$C(S) \rightarrow$ output of the system
Transfer function of the system $T(C)=\frac{C(S)}{R(S)}$
overall gain

$$
T=\frac{1}{\Delta} \sum_{k=1}^{N} \dot{P}_{k} \Delta_{k}
$$

where,
$T=T(s)=$ Transfer function of the system.
$P_{k}=$ Forward path gain of $k^{\text {th }}$ forward path $\Delta=1$ - (sum of individual loop gains) + (sum of (two non touching wops) + (sum of S non-touching).
$\Delta_{k}=1$ - loop gains which are not touching to $k^{\text {th }}$ forward path.

Eg:

No. of forward paths: $N=1$
Path gain of forward paths: $P_{1}=a_{1} G_{2}$
loop gain of individual loops:

$$
\begin{aligned}
& L_{1}=-H_{1} \\
& L_{2}=-G_{1} H_{2} \\
& L_{3}=-H_{3}
\end{aligned}
$$

No. of two o non-touching loops: L_{1} and L_{3}

$$
\begin{aligned}
& P_{21}=H_{1} H_{3} \quad C_{2} \text { and } L_{3} \\
& \Delta=1-\left(-H_{1}-H_{1} H_{2}-H_{3}\right)+\left(H_{1} H_{3}+C_{1} H_{2} H_{3}\right) \\
& \Delta x=\Delta_{1}=1-(0)=1 \\
& T(5)=\frac{1}{1+H_{1}+G_{1} H_{2}+H_{3}+H_{1} H_{3}+G_{1} H_{2} H_{3}} \times G_{1} G_{2} \times 1 \\
& =
\end{aligned}
$$

Steps for solving signal flow graph:-

1. Identify all forward paths.
2. Calculate all forward path gain.
3. Identify all feedback loops.
4. Calculate all the Loop gain.
5. Identify all feedback wop that don't touch eachother.
6. Calculate the gain of two non-touching loop.
7. Calculate the value of Δ and Δ_{k}.
8. Put all the values in the Mason's gain formula.
9. Calculate the overall gain.

Problem-1: Find the overall transfer function of the system whose signal flow graph is shown in figure.

Ans: No. of forward paths $=2$

$P_{1}=G_{1} G_{2} G_{3} a_{4} a_{5}$
$R(s)$
 (C)

$$
P_{2}=G 69495
$$

$\Delta=1-$ (sum of! individual loops) +1 sum of two non-touching loops) $t^{\prime} \cdots$
Loops: $L_{1}=-G_{2} H_{1}$

$$
\begin{aligned}
& L_{2}=-G_{5} H_{3} \\
& L_{3}=-G_{2} G_{3} H_{2}
\end{aligned}
$$

two non-touching loops: L_{1} and L_{2} L_{3} and L_{2}

$$
\begin{aligned}
& P_{21}=G_{2} G_{5} H_{1} H_{3} \\
& P_{22}=G_{2} G_{3} G_{5} H_{2} H_{3} \\
& \Delta= 1-\left(-G_{2} H_{1}-G_{5} H_{3}-G_{2} G_{3} H_{2}\right)+\left(G_{2} G_{5} H_{1} H_{3}+G_{2} G_{3} G_{5} H_{2} H_{3}\right) \\
&= 1+G_{2} H_{1}+G_{5} H_{3}+G_{2} G_{3} H_{2}+G_{2} G_{5} H_{1} H_{3}+G_{2} G_{3} G_{5} H_{2} H_{3} \\
& \Delta R=\Delta_{1}=1-0=1 \\
& \Delta_{2}=1-\left(-G_{2} H\right) \\
&=1+G_{2} H
\end{aligned}
$$

$$
T=\frac{1}{\Delta} \sum_{k=1}^{N} P_{k} \Delta_{k}
$$

$$
=\quad 9245+4,+13+
$$

$$
=\frac{G_{1} G_{2} G_{3} G_{4} G_{5}+G_{16} G_{4} G_{5}\left(1+G_{2} H_{1}\right)}{1+a_{2} H_{1}+a_{5} H_{3}+G_{2} G_{3} H_{2}+a_{2} G_{5} H_{1} H_{3}+G_{2} G_{3} G_{5} H_{2} H_{3}}
$$

Problem-2: Find the overall transfer function of the system, whose signal flow graph is shown in the

Ans: No. of forward path $=1$
Forward path gain $=G_{1} G_{12} G_{3}$

$$
\begin{aligned}
\text { Individual loop gain }=L_{1} & =-G_{1} G_{2} \mathrm{H} \\
L_{2} & =-G_{2} G_{3} H_{2}
\end{aligned}
$$

No. of non-touching loop $=0$

$$
\begin{aligned}
& \Delta=1-\left(L_{1}+L_{2}\right)-0 \\
& =1-\left(-G_{1} G_{2} H_{1}-G_{2} G_{3} H_{2}\right)-0 \\
& \Delta=1+G_{1} G_{2} H_{1}+G_{2} G_{3} H_{22} \\
& \Delta k=\Delta_{1}=1-0 \\
& =1
\end{aligned}
$$

Applying Mason's gain formula:

$$
\begin{aligned}
T & =\frac{1}{\Delta} \sum_{k=1}^{n} P_{k} \cdot \Delta_{k} \\
& =\frac{1}{1+G_{1} G_{2} H_{1}+G_{2} G_{3} H_{2}} \times G_{1} G_{2} G_{3} \times 1 \\
& =\frac{G_{1} G_{2} G_{3}}{1+G_{1} G_{2} H_{1}+G_{2} G_{3} H_{2}}
\end{aligned}
$$

Problem-3: Find the overall transfer function of the system, whose signal flow graph is shown in the figure.

Ans: No. of forward path $=2$

$$
\begin{aligned}
& P_{1}=1 \times 2 \times 3 \times 4 \times 1=24 \\
& P_{2}=1 \times 5 \times 1=5
\end{aligned}
$$

Individual loops: $L_{1}=-2 \quad(\omega-x-\omega)$

$$
\begin{array}{ll}
L_{2}=-3 & (x-y-x) \\
L_{3}=-4 & (y-z-y) \\
L_{4}=-5 & (w-z-y-x-w)
\end{array}
$$

L_{1} and L_{3} ore non-tociching loop.

$$
\begin{aligned}
\Delta & =1-\left(L_{1}+L_{2}+L_{3}+L_{4}\right)+\left(L_{1} L_{3}\right)-0 \\
& =1-(-2-3-4-5)+(-2 x-4) \\
& =1-(-14)+8 \\
& =1+14+8 \\
& =23
\end{aligned}
$$

since there are two forward paths, there will be $2 \Delta_{k}$.

$$
\begin{aligned}
\Delta_{1} & =1-0 \\
& =1 \\
\Delta_{2} & =1-(-3) \\
& =1+3 \\
& =4
\end{aligned}
$$

$$
\begin{array}{lll}
P_{1}=24 & \Delta_{1}=1 & \Delta=23 \\
P_{2}=5 & \Delta_{2}=4 &
\end{array}
$$

$$
\begin{aligned}
\text { Mason's gain formula } & =\frac{C}{R}=\frac{1}{\Delta} \sum_{k=1}^{N} P_{k} \Delta_{k} \\
& =\frac{1}{\Delta}\left(P_{1} \Delta_{1}+P_{2} \Delta_{2}\right) \\
& =\frac{1}{23} \times(24+20) \\
& =\frac{44}{23}
\end{aligned}
$$

Problem-4: Find the overall transfer function of the system, whose signal flow graph is shown in the figure.

Ans: No. of forward path $=1$

$$
\text { Forward path gain }=C_{11} G_{2} C_{13} G_{1}
$$

Individual loop gain, $L_{1}=-\mathrm{C}_{2} \mathrm{G}_{3} \mathrm{H}_{2}$

$$
\begin{aligned}
& L_{2}=-G_{3} G_{4} H_{1} \\
& L_{3}=-G_{1} G_{2} G_{13} G_{4}
\end{aligned}
$$

There are no non-touching wops.

$$
\begin{aligned}
\Delta & =1-\left(-G_{2} G_{3} H_{2}-G_{3} G_{4} H 1-G_{1} G_{2} G_{3} G_{4}\right)+0 \\
& =1+G_{2} G_{3} H_{2}+G_{3} G_{4} H_{1}+G_{1} G_{2} G_{3} G_{4}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta k=1-0 \\
& \Delta_{1}=1
\end{aligned}
$$

$$
\begin{aligned}
\text { Mason's gain formula } & =\frac{1}{\Delta} \sum_{k=1}^{n} P_{k} \Delta_{k} \\
& =\frac{G_{1} G_{2} G_{3} G_{4}}{1+G_{2} G_{3} H_{2}+G_{3} G_{4} H_{1}+G_{1} G_{2} G_{3} G_{4}}
\end{aligned}
$$

Problem-5: Find the gain of the given system ($\frac{C}{R}$) using) Mason's gain formula.

Ans: No. of forward paths :-2

$$
P_{1}=G_{1} G_{2} G_{3}
$$

$$
P_{2}=G_{4}
$$

Individual loop gain: $L_{1}=-G_{2} H$

$$
\begin{aligned}
& L_{2}=-G_{1} G_{2} H_{3} \\
& L_{3}=-G_{2} G_{3} H_{2}
\end{aligned}
$$

There is no non-touching loops.
So,

$$
\begin{aligned}
& \Delta=1-\left[-G_{2} H_{1}-G_{1} G_{2} H_{3}-G_{2} G_{3} H_{2}\right]+0 \\
&= 1+G_{2} H_{1}+G_{1} G_{2} H_{3}+G_{2} G_{3} H_{2} \\
& \Delta k=\Delta_{1} \\
&=1 \\
& \Delta 2=1-\left[-G_{2} H_{1}-G_{2} G_{3} H_{2}-G_{1} G_{2} H_{3}\right] \\
&=1+G_{1} H_{1}+G_{2} G_{3} H_{2}+G_{1} G_{2} H_{3}
\end{aligned}
$$

$$
\begin{aligned}
T & =\frac{1}{\Delta} \sum_{k=1}^{N} P_{k} \Delta x \\
& =\frac{G_{1} G_{2} G_{3}+G_{4}\left(1+G_{2} H_{1}+G_{2} G_{3} H_{2}+G_{1} G_{2} H_{3}\right)}{1+G_{2} H_{1}+G_{2} G_{3} H_{2}+G_{1} G_{2} H_{3}}
\end{aligned}
$$

Problem-6: Find the gain of the given system $\left(\frac{C}{R}\right)$ using Mason's gain formula.

Ans: Number of forward path $=2$

$$
p_{1}=a_{2}
$$

$$
P_{2}=G_{1}
$$

There are four loops.
Loop gain are $L_{1}=-G_{1} G_{3}$

$$
\begin{aligned}
& L_{2}=G_{1} G_{4} \\
& L_{3}=-G_{2} G_{3} \\
& L_{4}=G_{2} G_{4}
\end{aligned}
$$

There are no non-touching loops

$$
\begin{aligned}
\Delta & =1-\left[-a_{1} a_{3}+a_{1} a_{4}-a_{2} a_{3}+a_{2} G_{4}\right] \\
& =1+a_{1} a_{3}-a_{1} a_{4}+a_{2} a_{3}-a_{2} a_{4}
\end{aligned}
$$

Forward paths 1 and 2 touch all the loops.
Therefore,

$$
\begin{aligned}
& \Delta_{1}=1-0=1 \\
& \Delta_{2}=1-0=1
\end{aligned}
$$

Transfer function

$$
\begin{aligned}
T=\frac{C}{R} & =\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}}{\Delta} \\
& =\frac{G_{1}+G_{2}}{1+G_{1} G_{3}-G_{1} G_{4}+G_{2} G_{3}-G_{2} G_{4}}
\end{aligned}
$$

Problem-7: Find the gain of the given system $\left(\frac{C}{R}\right)$ using? Mason's gain formula.

Ans: Number of forward path $=1$

$$
P_{1}=G_{1} G_{2} G_{3}
$$

There are three loops. Loop gains $L_{1}=-G_{1} G_{2} H_{1}$

$$
\begin{aligned}
& L_{2}=-G_{2} G_{3} H_{2} \\
& L_{3}=-G_{1} G_{2} G_{3}
\end{aligned}
$$

There are no non touching loops

$$
\begin{aligned}
\Delta & =1-\left[-G_{1} G_{2} H-G_{2} G_{3} H_{2}-G_{1} G_{2} G_{3}\right] \\
& =1+G_{1} G_{12} H+G_{1} G_{3} H_{2}+G_{1} G_{2} G_{3}
\end{aligned}
$$

Forward path touches all the loops. Therefore

$$
\Delta k=1
$$

Transfer function,

$$
\begin{aligned}
T=\frac{C}{R} & =\frac{P_{1} \Delta_{k}}{\Delta} \\
& =\frac{G_{1} G_{2} G_{3}}{1+G_{1} a_{2}+1+G_{2} G_{3}+_{2}+G_{1} G_{2} G_{3}}
\end{aligned}
$$

Problem-8: Find the gain of the given system $\left(\frac{C}{R}\right)$ using Mason's gain formula.

Ans: There are three forward paths.
The gain of the forward path are:

$$
\begin{aligned}
& P_{1}=G_{1} G_{2} G_{3} G_{4} G_{5} \\
& P_{2}=G_{1} G_{6} G_{4} a_{5} \\
& P_{3}=G_{1} G_{2} G_{7}
\end{aligned}
$$

There are four loops with loop gains:

$$
\begin{aligned}
& L_{1}=-G_{4} H_{1} \\
& L_{2}=-G_{2} G_{7} H_{2} \\
& L_{3}=-G_{6} G_{4} G_{5} H_{2} \\
& L_{4}=-G_{2} G_{3} G_{4} G_{5} H_{2}
\end{aligned}
$$

There is one combination of loops L_{1} and L_{2} which are non touching with loop gain product

$$
\begin{gathered}
L_{1} L_{2}=G_{2} G_{7} H_{2} G_{4} H_{1} \\
\Delta=1-\left[-G_{4} H_{1}-G_{2} G_{7} H_{2}-G_{6} G_{4} G_{5} H_{2}-G_{2} G_{3} G_{4} G_{5} H_{2}\right] \\
+G_{2} G_{4} G_{7} H_{1} H_{2} \\
=1+G_{4} H+G_{2} H_{2} G_{7}+G_{6} G_{4} G_{5} H_{2}+G_{2} G_{3} G_{4} G_{5} H_{2}+ \\
G_{2} G_{4} G_{7} H_{1} H_{2}
\end{gathered}
$$

Forward path 1 and 2 touch all the four loops.
Therefore, $\Delta_{1}=1, \Delta_{2}=1$
Forward path 3 is not in touch with loop 1 .
Hence, $\quad \Delta_{3}=1+\mathrm{C}_{4} \mathrm{H}_{1}$
So, The transfer function,

$$
\begin{aligned}
& T=\frac{C(S)}{R(S)}=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}+P_{3} \Delta_{3}}{\Delta} \\
&=\frac{G_{1} G_{2} G_{3} G_{4} G_{5}+G_{1} G_{4} G_{5} G_{6}+G_{1} G_{2} G_{3}\left(1+G_{4} H_{1}\right)}{1+G_{4} H_{1}+G_{2} G_{7} H_{2}+G_{6} G_{4} G_{5} H_{2}+G_{2} G_{3} G_{4} G_{5} H_{2}+} \\
& G_{2} G_{4} G_{7} H 1 H_{2} .
\end{aligned}
$$

Assignment -4

1. What do you mean by block diagram in control systems?
2. Explain the canonical form of closed loop system?
3. Find the transfer function of the closed loop system

4. Find the overall transfer function of the system, whose signal flow graph is shown in the figure.

Chapter -5 nahum

Time Domain Analysis of control systems
Syllabus: Defination of Time, stability, steady-state response, accuracy, In-sensitivity and robustness. system Time response. Analysis of steadif state error, Types of input and steady state error (step, ramp, parabolic), Parameters of first order system and second order systems, Derivation of time response specification (Delay time, Rise time, peak time, setting time, peak overshoot).
Definations:-
Time domain is the analysis of mathematical functions, physical signals with respect to time. In the time domain, the signal or function's value is known for all real numbers, for the core of continuous time or at various separate instants in the case of discrete time.

Defination of time:- Time is the indefinite continued progress of existence and events that occur in an apparently irreversible succession from the past, through the present, into the future.

Defination of stability: - A system is said to be stable, if its output is under control. Otherwise, it is said to be unstable. A stable system produces a bounded output for a given bounded input.
We can classify the systems based on stability as
(1) Absolutely stable system
(2) Conditionally stable system
(3) Marginally stable system.

If a system is stable for all the range of system" component values, then it is known as the absolutely stable system.

If the system is stable for a certain range of system component value,, then it is known as conditionally stable system.

If the system is stable by producing an output signal with constant amplitude and constant froquancy of oscillations for bounded input, then it is known as marginally stable system.

Defination of steady state response:
The steady state response of the systems is the response of the system for a given input that remains after the transient has died lout.

Defination of accuracy:-
In a set of measurements, accuracy is closeness of the measurements to a specific value, while precision is the closeness of the measurements to each other. Defination of Transient Accuracy:-

Transient analysis calculates a circuit's response over a period of time defined by the user. The accuracy of the transient analysis is dependent on the size of internal time steps, which together make up the complete simulation time known as the Run time or stop time.

Robustness:-
Robustness is the property of being strong and healthy in constitution. When it is transposed into a system, it refers to the ability of tolerating perturbation that might affect the system's functional body.
System Time Response: -
Time response $c(t)$ is the variation of output with respect to time. The part of time response that goes to zoo after large interval of time is callod transient response $C_{t r}(t)$. The part of time response that remains after transient response is called steady state response $C_{s s}(t)$.

If the output of control system for an input varies with respect to time is called the time response of the control system.

The time response consists of two parts.
(1) Transient response
(2) Steady state response.

Mathematically

$$
c(t)=\operatorname{ctr}(t)+\operatorname{css}(t)
$$

Transient Response :-
After applying input to the control system, output take) certain time to reach steady state. So the output will be in transient state till it goes to a steady stele. Therefore, the response of the control. system during the transient state is known as Transient response.

The transient rospome will be zero for longe values of ' t '. Ideally, this value of ' t ' is infinity and practically, it is five times constant.
Steady' State response:-
The part of the time response that remains even after the transient response has zen value for large value of ' t ' is known as steady state. response. This means, the transient resporsal will be zero even during the steady state.
Example :-
Let u find the transient and stoadug state terms of the time response of the control system.

$$
c(t)=10+5 e^{-t}
$$

Here the second term $5 e^{t}$ will be zen as t denotes infinity. So, this is the transient term. And the first. term 10 remains even t approaches infinity. So, this is the steady state term. Analysis of steady state error:

For a step excitation the difference between the desired output and the final value of the output of a system is term as steady state error of the system.

The deviation of the output of control system from desired response during steady state is known an steady state error. It is represented as es.

We can find steady state error using the final value theorem.

$$
e_{s s}=\lim _{t \rightarrow \infty} e(t)=\lim _{s \rightarrow 0} s E(1)
$$

where,
$E(s)$ is the laplace transform of the error signal eft).
steady state errors for unity feedback systems:-
consider. the following block diagram of closed wop control system, which is having unity negative feed back.

Where,
$R(3)$ is the laplace transform of the reference input signal $r(t)$
(13) is the laplace transform of the output signal (t).
We know, The transfer function of the unity negative feedback closed loop control system as

$$
\begin{aligned}
& \frac{C(1)}{R(s)}=\frac{G(s)}{1+G(1)} \\
\Rightarrow & C(s)=\frac{R(s) \cdot G(s)}{1+G(s)}
\end{aligned}
$$

The output of the summing point is.

$$
E(s)=R(s)-C(s)
$$

By substituting the value of (1)

$$
\begin{aligned}
E(s) & =R(s)-\frac{R(s) \cdot G(s)}{1+G(s)} \\
\Rightarrow E(s) & =\frac{R(s)+R(s)-G(s)-R(s) \cdot G(s)}{1+G(s)} \\
\Rightarrow E(s) & =\frac{R(s)}{1+G(s)}
\end{aligned}
$$

By substituting the value of $E(1)$ in the steady state error fromula.

$$
\text { es }=\lim _{s \rightarrow 0} \frac{s R(s)}{1+G(s)}
$$

The following table shows the steady state error and the error constants for standard input signals like unit step, unit ramp \& unit parabolic signals. unit step signal:steady state error: $\frac{1}{1+k_{p}}$

$$
\text { Error constant, } K_{p}=\lim _{s \rightarrow 0} G(s)
$$

$$
K p=\text { position error constant. }
$$

Unit Ramp Signal:
Steady state error $l_{s s}=\frac{1}{k^{v}}$

$$
k_{v}=\lim _{s \rightarrow 0} s G(1)
$$

$k v=$ velocity error constant
Unit parabolic signal:
Steady state error $l_{s s}=\frac{1}{k a}$

$$
x_{a}=\lim _{s \rightarrow 0} s^{2} a(s)
$$

$\mathrm{Ka}_{a}=$ acceleration error constant
Steady state error for a negative feedback system:-
A simple closed loop control system with negative feedback is

$$
\begin{aligned}
& E(s)=R(s)-B(s) \\
& B(s)=C(s) \cdot H(s) \\
& C(s)=E(s) \cdot G(s)
\end{aligned}
$$

$$
\begin{aligned}
& E(s)=R(s)-((s) \cdot H(s) \\
\Rightarrow & E(s)=R(s)-E(s) \cdot G(s) \cdot H(s) \\
\Rightarrow & E(s)+E(s) \cdot G(s) \cdot H(s)=R(s) \\
\Rightarrow & E(s)[1+G(s) \cdot H(s)]=R(s) \\
\Rightarrow & E(s)=\frac{R(s)}{1+G(s) \cdot H(s)}
\end{aligned}
$$

Therefore, steady state error depends on two factors.
(i) Types and magnitude of $R(s)$
(ii) Open loop transfer function $G(s)$. Hes)

Order of system:
The order of a system is the highest power of ' s ' in the denominator of system. transfer function. Accordingly s a system is categorised as first order
system, Second order system ate. system, second order system ate.
Example: Find the order of the system represented by following block diagram.

Ans: Transfer function

$$
\begin{aligned}
\frac{C(s)}{R(s)} & =\frac{\frac{1}{3 s}}{1+\frac{1}{3 s}} \\
& =\frac{1 / 35}{\frac{3 s+1}{3 s}} \\
& =\frac{1}{3 s+1}
\end{aligned}
$$

The highest power of ' s ' in denominator is ane. so it is a first order system:

Example: Determine the order of the system represonted by following block diagram.

Ans: $\quad G(s)=\frac{1}{s(s+1)}$

$$
H(s)=1
$$

$$
\begin{aligned}
\text { Transfer function } & =\frac{(1(s)}{1+G(s) \cdot H(1)} \\
& =\frac{\frac{1}{s(s+1)}}{1+\frac{1}{s(s+1)} \cdot 1} \\
& =\frac{\frac{1}{s(s+1)}}{\frac{s(s+1)+1}{s(s+1)}} \\
& =\frac{1}{s+s+1}
\end{aligned}
$$

The highest power of ' s ' in denominator of tramper function is two, so it is a second order system.
Example:- The differential equation. governing a control system is given by

$$
\frac{d^{2} c}{d t^{2}}+5 \frac{d c}{d t}+8 c=3 \gamma
$$

Find the transfer function and order of the system.

Ans: Taking the laplace transfer of the differential equation

$$
\begin{aligned}
& s^{2} c(s)+5 s(c)+8(c s)=3 R(s) \\
\Rightarrow & \left(s^{2}+5 s+8\right) \cdot c(s)=3 R(s) \\
\Rightarrow & \frac{c(s)}{R(s)}=\frac{3}{s^{2}+5 s+8}
\end{aligned}
$$

The highest power of s in denominator is 2 : Therefore it is a second order system.
Types of input and steady state error (step, varro, porrabolic):-1
Types of control system: \qquad
Consider a general feedback control system as represented by block diagram.

The open loop transfer function is GH. The type of control system depend on power of term ' s ' in the denominator of GH .

GH can be generally expressed as

$$
q(s) . \text { Hes }=\frac{k\left(1+T_{1} s\right)\left(1+T_{2} s\right) \cdots \cdot}{s^{m}\left(1+T_{a} s\right)\left(1+T_{b} s\right) \cdots}
$$

If $m=0$, then the system is type ' 0 '.
For $m=1,2, \ldots$ categorised system of type 1 , type $2 \ldots$ system respectively.

m	Type of system
0	Type 'o' system
1	Type ' 1 ' system
2	Type ' 2 ' system
3	Type ' 3 ' system.

Example: The open loop transfer function of some system are given below. Name the type of the system.
(a) $\frac{10}{(s+1)\left(s^{2}+3 s+4\right)} \quad$ (b) $\frac{9}{s(s+1)(s+2)}$
(c) $\frac{3(s+5)}{s^{2}(s+3)(s+8)(s+9)(s+10)}$

Ans: (a) $G(s) \cdot H(s)=\frac{10}{(s+1)\left(s^{2}+3 s+4\right)}$
s^{m} in denominator is $1=s^{0}$
So, $m=0$, it is a type ' o ' system.
(b) $\quad G(s) \cdot H(s)=\frac{9}{s(s+1)(s+2)}$
s^{m} in denominator is s^{\prime}
So, $m=1$, it is a type i' system.
(c) $G(s) . H(s)=\frac{3(s+5)}{s^{2}(s+3)(s+8)(s+9)(s+10)}$
s^{m} in denominator is s^{2}
So, $n=2$, it is a type C_{2}^{\prime} system.
\rightarrow Types of inputs:-
The type of inputs are step, ramp and parabolic signals. These signals are used to know the performance of the control systems using time response of the output.
(1) Unit step signal:-

A unit step function is represented by $u(t)$ and is expressed mathematically by equation

$$
\begin{aligned}
u(t) & =1 ; \quad t \geqslant 0 \\
& =0 ; \quad t<0
\end{aligned}
$$

Laplace transform of a unit
 step function is

$$
\begin{aligned}
\alpha\{u(t)\} & =\int_{0}^{\infty} u(t) \cdot e^{-s t} d t \\
& =\int_{0}^{\infty} e^{-s t} d t \\
& =\left[\frac{e^{-s t}}{-s}\right]_{0}^{\infty} \\
& =\frac{1}{s}
\end{aligned}
$$

Laplace transform of a step function of magnitude k is equal to $\frac{k}{s}$
(2) Unit Ramp signal:

A ramp function varies linearly with time. It is represented a) $\gamma(t)$ and is expressed mathematically as

$$
\begin{aligned}
r(t) & =K(t) ; t \geqslant 0 \\
& =0 ; t<0
\end{aligned}
$$

Laplace transform of ramp function is given by?

$$
\begin{aligned}
\alpha\{r(t)\} & =\int_{0}^{\infty} r(t) \cdot e^{-s t} d t \\
& =\int_{0}^{\infty} k t e^{-s t} d t=\frac{k}{s^{2}}
\end{aligned}
$$

(3) Unit parabolic function:-

Parabolic function used as a test input, the unit parabolic signal exists for all the positive valuer. of 't' including zero. And its value increases non-lineorly with respect to ' t ' during this interval. The value of the unit parabolic signal is zero for all the negative values of ' t '.

$$
\begin{aligned}
P(t) & =\frac{t^{2}}{2} ; t \geqslant 0 \\
& =0 ; t<0
\end{aligned}
$$

Laplace transform of parabolic signal is given by

$$
\alpha\left\{\frac{t^{2}}{2}\right\}=\frac{1}{s^{3}}
$$

Steady state error:-
The steady state error can be expressed by two types of constants.
(i) Static error coefficients
(ii) Dynamic error coefficients.

Static error coefficient:-
Static error coefficient depends on open loop transfer function $G(s)$.Hes). There are three types of static error coefficients.
(i) Static position error constant (k_{p}) : It is defined as

$$
K_{p}=\lim _{s \rightarrow 0} G(s) . H(s)
$$

(ii) Static velocity error constant ($k v$) : it is defined as

$$
\left.k v=\lim _{s \rightarrow 0} s \cdot G(s) \cdot H+s\right)
$$

(iii) Static Acceleration constant (Ka_{a}): It is defined as

$$
k a=\lim _{s \rightarrow 0} s^{2} \cdot a(s) . H(s)
$$

Steady state error for different types of system:(a) Steady state error with unit step input.

$$
\text { less }=\lim _{s \rightarrow 0} s \cdot \frac{F(s)}{1+G(s) \cdot H(s)}
$$

For unit step input, $R(s)=\frac{1}{s}$

$$
\begin{aligned}
e_{s s} & =\lim _{s \rightarrow 0} s \cdot \frac{1 / s}{1+G(s) \cdot H(s)} \\
& =\lim _{s \rightarrow 0} \frac{1}{1+a(s) \cdot H(s)} \\
& =\frac{1}{1+\lim _{s \rightarrow 0} G(s) \cdot H(s)} \\
e_{s s} & =\frac{1}{1+k_{p}}
\end{aligned}
$$

where, $k p=\lim _{s \rightarrow 0} G(s) . H(s)$.
(b) Steady state error with lent ramp input.

For unit ramp input $R(s)=\frac{1}{s^{2}}$

$$
\begin{aligned}
e_{s s} & =\lim _{s \rightarrow 0} \frac{s\left(\frac{1}{s^{2}}\right)}{1+G(s) \cdot H(s)} \\
& =\lim _{s \rightarrow 0} \frac{1}{s[s+G(s) \cdot H(s)]} \\
& =\lim _{s \rightarrow 0} \frac{1}{s+s \cdot G(s) \cdot H(s)} \\
& =\frac{1}{\lim _{s \rightarrow 0} s G(s) \cdot H(s)} \\
& =\frac{1}{K v}
\end{aligned}
$$

where, $k v=\lim _{s \rightarrow 0} s . g(s)+H(s)$
(c) Steady state error with unit parabolic signal:

For unit parabolic input $R(s)=\frac{1}{s^{3}}$

$$
\begin{aligned}
e_{s s} & =\lim _{s \rightarrow 0} \frac{s\left(\frac{1}{s^{3}}\right)}{1+G(s) \cdot H(s)} \\
& =\lim _{s \rightarrow 0} \frac{1}{s^{2}(1+G(s) \cdot H(s))} \\
& =\lim _{s \rightarrow 0} \frac{1}{s^{2}+s^{2} G(s) \cdot H(s)} \\
& =\frac{1}{\lim _{s \rightarrow 0} s^{2} G(s) \cdot H(s)} \\
& =\frac{1}{k a}
\end{aligned}
$$

where, $k a=\lim _{s \rightarrow 0} s^{2} G(s)$.Hes).
For unit step input: let $G(s) . H+1)=\frac{k\left(1+s T_{1}\right)\left(1+s T_{2}\right) \cdots}{s^{m}(1+s T a)(1+s T b) \cdots}$

For type zero system, $m=0$

$$
\begin{aligned}
& k p=\lim _{s \rightarrow 0} G(s) \cdot H(s)=k \\
& \text { ess }=\frac{1}{1+k}
\end{aligned}
$$

For type one system, $m=1$

$$
\begin{aligned}
& k_{p}=\lim _{s \rightarrow 0} G(s) \cdot H(s)=\infty \\
& \text { less }=\frac{1}{1+\infty}=0
\end{aligned}
$$

For type two system, $m=2$

$$
\begin{aligned}
k_{p} & =\lim _{s \rightarrow 0} G(s) \cdot H(s)=\infty \\
e s s & =\frac{1}{1+k_{p}} \\
& =\frac{1}{1+\infty}=0
\end{aligned}
$$

So, steady state error due to unit stop input is $\frac{1}{1+k}$ for ' o ' type system and zero for higher type systems.
For unit ramp input :-
wee un whit
For type ' o ' system, $m=0$

$$
\begin{aligned}
& k_{r}=\lim _{s \rightarrow 0} s \cdot G(s) \cdot H(s)=0 \\
& e s s=\frac{1}{0}=\infty
\end{aligned}
$$

For type \mathbb{C}^{\prime} system, $m=1$.

$$
\begin{aligned}
k v & =\lim _{s \rightarrow 0} s \cdot G(s) \cdot H(s) . \\
& =k \\
\text { es } & =\frac{1}{k}
\end{aligned}
$$

For type ' 2 ' system, $m=2$

$$
\begin{aligned}
& k r=\lim _{s \rightarrow 0} s G(s) \cdot H(s)=\infty \\
& \text { less }=\frac{1}{\infty}=0
\end{aligned}
$$

So, steady state error due to unit ramp input is infinite for type 'os system, $\frac{1}{k}$ for type 1 system and zen for second and higher order system.

For unit parabolic input :ma mum ,uruum min

For type 0 system, $m=0$

$$
\begin{aligned}
& k_{a}=\lim _{s \rightarrow 0} s^{2}(s(s) \cdot H(s)=0 \\
& e_{s s}=\frac{1}{k_{a}}=\infty
\end{aligned}
$$

For type 1 system, $m=1$

$$
\begin{aligned}
& k_{a}=\lim _{s \rightarrow 0} s^{2} G(s) \cdot H(s)=0 \\
& e s s=\frac{1}{0}=6
\end{aligned}
$$

For type -2 system, $m=2$

$$
\begin{aligned}
& k a=\lim _{s \rightarrow 0} s^{2} a(s) \cdot H(s)=k \\
& \text { less }=\frac{1}{k}
\end{aligned}
$$

Example: The forward path transfer function Gs) and feedback transfer function Hes) of a control system are

$$
\begin{aligned}
& G(s)=\frac{10}{(s+2)\left(s^{2}+10 s+10\right)} \\
& H(s)=\frac{5}{s+4}
\end{aligned}
$$

Find the steady state error for following inputs.
(i) $r(t)=4$
(ii) $r(t)=4 t$
(iii) $r(t)=4 t^{2}$

Ans: Open loop transfer function : (Gs). Hes)

$$
\begin{aligned}
& =\frac{10}{(s+2)\left(s^{2}+10 s+10\right)} \cdot \frac{5}{s+4} \\
& =\frac{50}{(s+2)(s+4)\left(s^{2}+10 s+10\right)}
\end{aligned}
$$

(i)

$$
\begin{aligned}
& r(t)=4 \\
& R(s)=\frac{4}{s} \\
& l s s=\lim _{s \rightarrow 0} s \cdot \frac{R(s)}{1+G(s) \cdot H(s)} \\
&=\lim _{s \rightarrow 0} s \frac{s \cdot \frac{4}{s}}{1+G(s) \cdot H(s)} \\
&=\frac{4}{1+\lim _{s \rightarrow 0} G(s) \cdot H(s)}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{s \rightarrow 0} G(s) \cdot H(s)=\frac{50}{\lim _{s \rightarrow 0}(s+2)(s+4)\left(s^{2}+10 s+10\right)} \\
&=\frac{50}{80}=\frac{5}{8} \\
& \therefore Q s s=\frac{4}{1+\frac{5}{8}}=\frac{4}{\frac{8+5}{8}}=4 \times \frac{8}{13} \\
&=\frac{32}{13}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
r(t) & =4 t \\
R(s) & =\frac{4}{s^{2}} \\
e_{s s} & =\lim _{s \rightarrow 0} s \cdot \frac{R(s)}{1+G(s) \cdot H(s)} \\
& =\lim _{s \rightarrow 0} \frac{s \cdot \frac{4}{s^{2}}}{1+G(s) \cdot H(s)} \\
& =\lim _{s \rightarrow 0} \frac{s+s \cdot G(s) \cdot H(s)}{4} \\
& =\lim _{s \rightarrow 0} s \cdot G(s) \cdot H(s) \\
& =\frac{4}{k v}
\end{aligned}
$$

It is a type o^{\prime} system

$$
\begin{aligned}
k_{r} & =\lim _{s \rightarrow 0} s \cdot G(s) \cdot H(s) \\
& =0 \\
\therefore l_{s s} & =\frac{4}{0} \\
& =\infty
\end{aligned}
$$

(iii)

$$
\begin{aligned}
r(t) & =4 t^{2} \\
R(s) & =2 \cdot \frac{4}{s^{3}}=\frac{8}{s^{3}} \\
e s s & =\lim _{s \rightarrow 0} s \cdot \frac{R(s)}{1+G(s) \cdot H(s)} \\
& =\lim _{s \rightarrow 0} \frac{s \frac{8}{s^{3}}}{1+G(s) \cdot H(s)} \\
& =\lim _{s \rightarrow 0} \frac{8}{s^{2}+s^{2} G(s) \cdot H(1)} \\
& =\lim _{s \rightarrow 0} \frac{8}{\lim _{s \rightarrow 0} s^{2} G(s) \cdot H(s)} \\
& =\frac{8}{k a}
\end{aligned}
$$

It is a type oo system.
$k_{a}=0$

$$
\text { So, Cess }=\frac{8}{0}=6
$$

Parameters of first order system and second order system:First order system:-

The block diagram of closed loop unity feedback system is

(Block diagram of first order system)

$$
\begin{aligned}
& \text { Here, } \begin{aligned}
G(s) & =\frac{1}{S T} \\
H(S) & =1 \\
\text { Transfer function } & =\frac{C(s)}{R(s)}
\end{aligned}=\frac{G(s)}{1+G(s) \cdot H(s)} \\
&=\frac{\frac{1}{S T}}{1+\frac{1}{s T} \cdot 1} \\
&=\frac{\frac{1}{s T}}{\frac{s T+1}{S T}} \\
&=\frac{1}{s T+1}
\end{aligned}
$$

The highest power of s in denominator is one. So, this represents a first order system.
Responser of first order system:-

1. Unit step response of first order system:-

This response is obtained by applying unit step input to a first oreler system.

$$
\text { Transfer function } \frac{C(1)}{R(s)}=\frac{1}{s T+1}
$$

For unit step input $r(t)=1$

$$
\begin{aligned}
& R(c)=\frac{1}{s} \\
& \text { output } C(s)=\frac{1}{s T+1} \cdot R(s) \\
&=\frac{1}{s(s T+1)}=\frac{1}{s}-\frac{1}{s T+1}
\end{aligned}
$$

Time response of the system is obtained by taking inverse laplace transform.

$$
\begin{aligned}
\alpha^{-1}(c s) & =\alpha^{-1}\left\{\frac{1}{s}-\frac{T}{s T+1}\right\} \\
& =\alpha^{-1}\left\{\frac{1}{s}\right\}-\alpha^{-1}\left\{\frac{T}{s T+1}\right\} \\
& =1-\alpha^{-1}\left\{\frac{1}{s+\frac{1}{T}}\right\} \\
& =1-e^{\frac{-t}{T}}
\end{aligned}
$$

case -1: Time $t=T$ (time constant)
The value of output $c(t)$ when $t=T$ is given by

$$
\begin{aligned}
c(t) & =1-e^{\frac{-T}{T}} \\
& =1-e^{-1} \\
& =0.632 \\
& =63.2 \%
\end{aligned}
$$

T is known as the time constant of the system. Time constant is defined as the time required by the signal to attain 63.22% of its final or steady state value.
\rightarrow A system is faster when time constant is smaller.

$$
\text { Case -2: } \quad t=2 T
$$

Then

$$
\begin{aligned}
C(t) & =1-e^{\frac{-2 T}{T}} \\
& =1-e^{-2} \\
& =0.864 \text { or } 86.4 \%
\end{aligned}
$$

Case-3:- $\quad t=4 T$
Then $\quad c(t)=1-e^{-\frac{4 T}{T}}$

$$
\begin{aligned}
& =1-e^{-4} \\
& =0.98 \\
& =98 \%
\end{aligned}
$$

For a time of $4 T$, the output is 98%. This time is known as settling time (ts).

$$
t_{s}=4 \mathrm{~T}
$$

Graphical representation:-

(unit step response of fort order system)
Steady state error:-
The error of a control system is given by

$$
\begin{aligned}
e(t) & =r(t)-c(t) \\
& =1-\left(1-e^{\frac{t}{T}}\right) \\
& =e^{-\frac{t}{T}}
\end{aligned}
$$

The steady state error (less) is the value of error of the system when time approaches infinity.

$$
\begin{aligned}
\text { es } & =\lim _{t \rightarrow \infty} e(t) \\
& =\lim _{t \rightarrow \infty} e^{\frac{-t}{t}} \\
& =0
\end{aligned}
$$

2. Unit Ramp Response of first order system: The response is obtained by applying a unit ramp input to a first order system. For unit ramp input,

$$
\begin{gathered}
r(t)=t \\
R(s)=\frac{1}{s^{2}}
\end{gathered}
$$

The output is given by

$$
\begin{aligned}
((s) & =\frac{1}{s T+1} \cdot R(s) \\
& =\frac{1}{S T+1} \times \frac{1}{s^{2}} \\
& =\frac{1-s T}{s^{2}}+\frac{T^{2}}{S T+1} \\
& =\frac{1}{s^{2}}-\frac{T}{S}+T \cdot \frac{1}{S+\frac{1}{T}}
\end{aligned}
$$

The time response of the system is obtained by taking laplace inverse

$$
\begin{aligned}
& \alpha^{-1}[c(s)]=\alpha^{-1}\left[\frac{1}{s^{2}}-T \frac{1}{s}+T \cdot \frac{1}{s+\frac{1}{T}}\right] \\
& \Rightarrow \quad c(t)=t-T+T e^{-\frac{t}{T}}
\end{aligned}
$$

Error $e^{(t)}=r(t)-c(t)$

$$
\begin{aligned}
& =t-\left(t-T+T e^{\frac{-t}{T}}\right) \\
& =T-T e^{\frac{-t}{T}}
\end{aligned}
$$

steady state error is given by

$$
\begin{aligned}
l_{s s} & =\lim _{t \rightarrow \infty} T-T e^{-\frac{t}{t}} \\
& =T-0 \\
& =T
\end{aligned}
$$

Graphical Representation:-

The response indicates that the output matches the insert but lag behind the input by time T. Time T is called log time.

The time lag and steady state error will be less for a smaller time constant of the system.
3. Unit Impulse response of a first order system:-

The response is obtained when a unit impulse input is applied to a first order control system.

Here, input or $(f)=\delta \dot{B}(t)$

$$
R(s)=1
$$

The output of the system is given by

$$
\begin{aligned}
c(s) & =\frac{1}{S T+1} \cdot R(S) \\
& =\frac{1}{s T+1}
\end{aligned}
$$

The time response of the system is obtained by taking laplace inverse

$$
\begin{aligned}
\alpha^{-1}\{c(s)\} & =\alpha^{-1}:\left\{\frac{1}{s T+1}\right\} \\
& =\alpha^{-1}\left\{\frac{1}{T} \cdot \frac{1}{s+\frac{1}{T}}\right\} \\
& =\frac{1}{T} \alpha^{-1}\left\{\frac{1}{s+\frac{1}{T}}\right\} \\
& =\frac{1}{T} e^{-\frac{t}{T}}
\end{aligned}
$$

The time response of the system is

Time Responses of first order system:-

Examples of $1^{\text {st }}$ order system:
(1) RC circuit: -

Transfer function

$$
=\frac{V_{0}(s)}{V_{i}(s)}=\frac{1}{1+R C s}
$$

Value of time constant $T=R C$
(2) RL circuit:-

Transfer function

$$
\begin{aligned}
& =\frac{V_{0}(s)}{V_{i}(s)}=\frac{L_{S}}{R+L_{S}} \\
& \text { value of time } C \\
& T=\frac{L}{R}
\end{aligned}
$$

Second order system:
A second order control system is ane in which the highest power of s in the denominator of transfer function is two.

The block diagram representation of a general sewed order syitend is

This block diagram is unity feedback closed wop control system with forward path transfer function $G(s)$.) and feedback transfer function Hes) as given

$$
\begin{aligned}
& G(s)=\frac{w_{n}^{2}}{s\left(s+2 \delta w_{n}\right)} \\
& H(s)=1
\end{aligned}
$$

Where, $\omega_{n}=$ undamped natural frequency

$$
\delta=\text { damping factor. }
$$

The closed loop transfer function is

$$
\begin{aligned}
\frac{C(s)}{R(s)} & =\frac{G(s)}{1+G(s) \cdot H(s)} \\
& =\frac{\frac{\omega_{n}^{2}}{s\left(s+2 \delta \omega_{n}\right)}}{\sqrt{1+\frac{\omega_{n}^{2}}{s\left(s+2 \delta \omega_{n}\right)}} \cdot 1} \\
& =\frac{\omega_{n}^{2}}{s^{2}+2 \delta \omega_{n} s+\omega_{n}^{2}}
\end{aligned}
$$

Here,
characteristics equation is

$$
s^{2}+2 \delta \omega_{n} s+\omega_{n}^{2}=0
$$

Derivation of time Response Specification:(Delay time, Rise time, peak time, selling time, peak overshoot)
The time response exhibits damped oscillations with overshoot and undershoot before reaching steady state. Those are the quantities which are used to express tramient response of the system.
(i) Delay time $\left(t_{d}\right)$
(ii) Rise time (tr)
(iii) Peak time ($t p$)
(iv) Peak overshoot (MP)
(v) Setting time (ts)

1. Delays time :- $(t d)$

It is defincol as the time required for the response to reach half of the final value for the first time.
2. Rise time :- (tr)

It is defined as the time required for the response to reach final value for the first time.

Expression:-
The time response equation is

$$
c(t)=1-\frac{e^{- \text {suntr }}}{\sqrt{1-\delta^{2}}} \sin \left[\omega_{d} t r+\phi\right]
$$

To obtain to, $C(1)=1$.
Then, $1=1-\frac{e^{-\delta \operatorname{contr}}}{\sqrt{1-\delta^{2}}} \sin [\omega a t r+\phi]$

$$
\Rightarrow \frac{e^{-\delta \omega_{n} t r}}{\sqrt{1-\delta^{2}}} \sin \left(\omega_{d} t r+\phi\right)=0
$$

So, $\frac{e^{-\delta w_{n} t r}}{\sqrt{1-\delta^{2}}} \neq 0$, therefore

$$
\begin{aligned}
& \sin (\omega d t r+\phi)=0 \\
& \Rightarrow \sin \left(\omega d t_{r}+\phi\right)=\sin n \pi \\
& \text { Puting } n=1 ; \quad \sin \left(\omega d t_{r}+\phi\right)=\sin \pi \\
& \Rightarrow \omega d t_{r}+\phi=\pi \\
& \Rightarrow t r=\frac{\pi-\phi}{\omega_{d}} \\
& \Rightarrow t r=\frac{\pi-\phi}{\omega_{n} \sqrt{1-\delta^{2}}} \quad \text { where, } \phi=\tan ^{-1} \frac{\sqrt{1-\delta^{2}}}{\delta}
\end{aligned}
$$

3. Peak Time :- (lp)

It is defined as the time required to reach to first peak of the time response.
Expression for ts :-

$$
C(t)=1-\frac{e^{-\delta \omega_{n} t}}{\sqrt{1-\delta^{2}}} \sin \left(\omega_{d} t+\phi\right)
$$

For maximum value, the first differential of the function is equated to zero.

$$
\begin{gathered}
\therefore \frac{d((t)}{d t}=0 \\
\Rightarrow-\frac{1}{\sqrt{1-\delta^{2}}}\left[e^{-\delta \omega_{n} t} \cos \left(\omega_{d} t+\phi\right) \cdot \omega_{d}+\sin \left(\omega_{d} t+\phi\right) \cdot e^{-\delta \omega_{n} t}\right. \\
\left.\left(-\delta \omega_{n}\right)\right]=0 \\
\Rightarrow-\frac{e^{-\delta \omega_{n} t}}{\sqrt{1-\delta^{2}}}\left[\cos \left(\omega_{d} t+\phi\right) \cdot \omega_{d}-\sin \left(\omega_{d} t+\phi\right) \delta \omega_{n}\right]=0
\end{gathered}
$$

Since, $e^{- \text {swot }} \neq 0$

$$
\begin{aligned}
& \therefore \cos \left(\omega_{d t}+\phi\right) \cdot \omega_{d}-\sin \left(\omega_{d} t+\phi\right) \delta \omega_{n}=0 \\
& \Rightarrow \cos \left(\omega_{d} t+\phi\right) \cdot \omega_{n} \sqrt{1-\delta^{2}}-\sin \left(\omega_{d} t+\phi\right) \delta \omega_{n}=0 \\
& \Rightarrow \cos \left(\omega_{d} t+\phi\right) \sqrt{1-\delta^{2}}-\sin \left(\omega_{d} t+\phi\right) \delta=0 \\
& \Rightarrow \cos \left(\omega_{d} t+\phi\right) \sin \phi-\sin \left(\omega_{d} t+\phi\right) \cdot \cos \phi=0 \\
& \Rightarrow \sin \left(\omega_{d} t+\phi-\phi\right)=0 \\
& \Rightarrow \sin \omega_{d} t=0
\end{aligned}
$$

Time for various peak of overshoot are

$$
\sin \omega d t=\sin n \pi
$$

$t=t p$ for first peak and $n=1$

$$
\begin{aligned}
& \sin \omega_{d} t p=\sin n \pi=\sin \pi \\
& \Rightarrow \omega_{d} t p=\pi \\
& \Rightarrow t p=\frac{\pi}{\omega d} \\
& \Rightarrow t p=\frac{\pi}{\omega n \sqrt{1-\delta^{2}}}
\end{aligned}
$$

4. Peak overshoot :- (Mp)

The maximum positive deviation of output from the steady state value is called peak overshoot.

$$
\begin{aligned}
M_{p} & =c(t)_{\text {max }}-c(\infty) \\
& =c(t)_{\text {max }}-1
\end{aligned}
$$

(\because steady state value)

$$
=c(\infty)=1
$$

Cgenerally maximum overshoot or peak overshot ot is expressed in percentage of steady state value and is given by

$$
\text { F.Mp} \begin{aligned}
& =\frac{c(t)_{\max }-c(\infty)}{c(\infty)} \times 100 \\
& =\frac{c(t)_{\max }-1}{1} \times 100 \\
& =M_{p} \times 100
\end{aligned}
$$

Expression for Mp :-
The maximum value of $c(t)$ is obtained at the peak time to.

$$
c(t p)=1-\frac{e^{-\delta \omega_{n} t p}}{\sqrt{1-\delta^{2}}} \sin \left(\omega_{\alpha}+p+\phi\right)
$$

$$
\begin{aligned}
& =1-\frac{e^{-\delta \omega_{n} \frac{\pi}{\omega_{n} \sqrt{1-\delta^{2}}}}}{\sqrt{1-\delta^{2}}} \sin \left(\omega_{d} \cdot \frac{\pi}{\omega_{n} \sqrt{1-\delta^{2}}}+\phi\right) \\
& =1-\frac{e^{-\frac{n \delta}{\sqrt{1-\delta^{2}}}}}{\sqrt{1-\delta^{2}}} \sin (\pi+\phi) \\
& =1+\frac{e^{-\frac{n \delta}{\sqrt{1-\delta^{2}}}}}{\sqrt{1-\delta^{2}}} \sin \phi \\
& =1+\frac{e^{\frac{-n \delta}{\sqrt{1-\delta^{2}}}}}{\sqrt{1 / \delta^{2}}} \cdot \sqrt{1-\delta^{2}} \quad\left(\because \sin \phi=\sqrt{1-\delta^{2}}\right) \\
& =1+e^{-\frac{n \delta}{\sqrt{1-\delta^{2}}}} \\
& M_{p}=\frac{c(t p)-1}{1-n \delta} \\
& =1+e^{\sqrt{\sqrt{1-\delta^{2}}}}-1 \\
& =e^{-\frac{n \delta}{\sqrt{1-\delta^{2}}}} \\
& \% M_{p}=M_{p} \times 100 \\
& =e^{-\frac{n \delta}{\sqrt{1-\delta^{2}}}} \times 100
\end{aligned}
$$

5. Settling time (ts):-

It is the time required for the response to reach within the specified range of final value $(2 \%$ or $5 \%)$.

$$
\text { Time constant of the system }=T=\frac{1}{\delta \omega_{n}}
$$

If the range is 2% then

$$
\text { settling time }=4 T=\frac{4}{\delta \omega i n}
$$

If the range is 5% then

$$
\text { Selling time }=3 T=\frac{3}{\delta \omega \pi}
$$

Characteristic) of system for different damping ratio (δ):

For $\delta>1$
\rightarrow Over damped.
\rightarrow Roots are negative, real and distinct.
\rightarrow Not oscillating
\rightarrow No over shoot
\rightarrow largest tr (rise time)
For $\delta=1$
\rightarrow Critically damped.
\rightarrow Roots are negative, real and repeatitive
\rightarrow Sustation os illation
\rightarrow No overshoot
\rightarrow less to (rise time)
For $\delta<1$
\rightarrow under damped
\rightarrow Roots are complex with negative real part.
\rightarrow Oscillating
\rightarrow overshoot
\rightarrow Less tr (rise time).
roblem: - The open loop transfer function of a system with unity feedback is given by $G(s)=\frac{10}{(s+2)(s+5)}$
Determine the damping? ratio, undamped natural frequency of oscillation. What ic the percentage overshoot of the response to a unit stop input. Ans: $\quad \quad \mathrm{q}(s)=\frac{10}{(s+2)(s+5)} ; H(s)=1$

The closed loop transfer function of the system is

$$
\begin{aligned}
\frac{C(s)}{R(s)} & =\frac{C_{1}(s)}{1+G^{(s)} \cdot H(s)} \\
& =\frac{\frac{10}{(s+2)(s+5)}}{1+\frac{10}{(s+2)(s+5)} \times 1}=\frac{\frac{10}{(s+2)(s+5)}}{\frac{(s+2)(s+5)+10}{(s+2)(1+5)}} \\
& =\frac{10}{s^{2}+5 s+2 s+10+10} \\
& =\frac{10}{s^{2}+7 s+20}
\end{aligned}
$$

So, the characteristic equation is $s^{2}+7 s+20=0$
standard characteristics equation is $s^{2}+2 \delta \omega_{n} s+\omega_{n}^{2}=0$
By comparing these two equations we get.,
(1) Natural frequency: $\left(w_{n}\right)$

$$
w_{n}^{2}=20 \Rightarrow w_{n}=\sqrt{20}=4.472 \mathrm{rad} / \mathrm{sec}
$$

(2) Damping ratio (8)

$$
\begin{aligned}
& 2 \delta w_{n}=7 \\
\Rightarrow & 2 \times \delta \times 4.472=7 \\
\Rightarrow & \delta=\frac{7}{2 \times 4.472} \\
\Rightarrow & \delta=0.7826
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3) Percentage overshoot : - } \begin{aligned}
\frac{-\pi \delta}{e^{\sqrt{1-\delta^{2}}}}=\frac{\pi \times 0.7826}{\sqrt{1-(0.7826)^{2}}} & =100 \\
& =1.92 \%
\end{aligned}
\end{aligned}
$$

Assignment - 5

1. What is peak time?

Ans: If the signal is overdamped, then rise time is counted a) the time required by the response to rise from 10% to 90% of its final value. Peak time ($t p$) is simply the time required by response to reach its first peak.
2. What is setting time?
3. What is time response?
4. What is rise time in control system?
5. Derivation of time response specification for delay time, rise time, peak time, settling time, peak. overshoot of a second order system.
6. What are the different type of input and derive steady state error for step resparise, ramp and parabolic input..
\rightarrow Chapter -b
Frodback characterigtici of control systems,

Syllabus: Effect of parameter variation in open loop system and closed loop system. Introduction to Basic control action and Basic modes of feedback control: proportional, integral and derivative. Effect of feedback on corral gain, stability, Realization of controllers ($P, P 1, P D(, P 1 D)$ with op-amp.

Effect of parameter variation in open loop system and closed Loop system:-
Effect of parameter variation:-
Feedback reduces error, reduces the sensitivity at the system to parameter variation.

Parameter may vary due to some change in condition and it's variation effect the performance of the system. So, it is necessary to make the system incensetive to parameter variation.
Effect of parameter variation on overall gain of a degenerative feedback control system:-

The overall gain or transfer function of a degenative feedback control system depend upon these parameters.
(i) variation in parameters of plant
(ii) variation in parameters of feedback system.
(iii) Disturbance signals.

The term sensitivity is a measure of the effectivchess of feedback on reducing the influence of any of the above described parameters. Eg: It is used to describe the relative variations in (the overall transfer function of a system T(s) due to variation in $G(s)$.

$$
\text { Sensitivity }=\frac{\% \text { change in output }(T()))}{\% \text { change in input }(G(\theta))}
$$

Effect of variation in $G(s)$ on $T(P)$ of a. degenerative Feedback control system:-
In an open loop system :-

$$
c(s)=a(s) \cdot R(s)
$$

Let, due to parameter variation in plant $G(s)$ changes to $[G(s)+\Delta G(s)]$ such that, $|G(s)|>|\Delta G(s)|$.

The output of the openloop system then changes to

$$
\begin{aligned}
& C(s)+\Delta((s)=[G(s)+\Delta G(s)] R(s) \\
\Rightarrow & C(s)+\Delta(C s)=G(s) \cdot R(s)+\Delta G(s) \cdot R(s) \\
\Rightarrow & \Delta((s)=\Delta G(s) \cdot R(s) \quad(\because(c s)=G(s) \cdot R(s))
\end{aligned}
$$

In closed loop system: -

$$
(c s)=\frac{G(s)}{1+G(s) \cdot H(s)} \cdot R(s)
$$

Let, due to parameter variation in plant, $G(s)$ changes to $[G(s)+\Delta G(1)]$ such that $|G(s)| \gg|\Delta G(1)|$

The output of the closed loop system then changes to,

$$
\begin{aligned}
((s)+\Delta(s) & =\frac{G(s)+\Delta G(s)}{1+[G(s)+\Delta G(s)] H(s)} \cdot R(s) \\
\Rightarrow((s)+\Delta c(s) & =\frac{G(s)+\Delta G(1)}{1+G(1) \cdot H(1)+\Delta G(1) \cdot H(1)} R(1)
\end{aligned}
$$

Since, $|G(1)| \gg \mid \Delta G(1)$, then $G(s) \cdot H(1)+\Delta G_{1}(1) \cdot H(1)$,
Therefore, $\Delta G(s) . H(s)$ is neglected. now,

$$
\begin{aligned}
& ((s)+\Delta C(s)= \\
\Rightarrow & G(1)+\Delta G(1) \\
\Rightarrow & C(1+(1) \cdot H(s) \\
& (1) \\
\Rightarrow & \Delta(1)=\frac{G(1)}{1+G(1) \cdot H(s)} \cdot \frac{\Delta G(s)}{1+G(1)} \cdot \frac{\Delta G(1)}{1+G(1) \cdot H(1)} \\
& \quad R(s)
\end{aligned}
$$

Introduction to Basic control action:-
It is the value of controlled variable, compere the actual value to the desired value and its deviation and produces control signal that will reduce the deviation to zero or to a smallest possible value and produces the control signal is called mode of control or basic control action.

Eg: Mechanical, Hydraulic, Electromechanical.

Basic Modes of feedback control: (Proportional, Integral and derivative): \qquad

1. Proportional controller:-

The proportional controller produces an output, which is proportional to error signal.

$$
\begin{aligned}
& u(t) \quad \alpha e(t) \\
\Rightarrow & u(t)=k p e(t)
\end{aligned}
$$

Applying laplace transform on both the sidles.

$$
\begin{aligned}
U(s) & =k_{p} E(s) \\
\Rightarrow \frac{U(s)}{E(s)} & =k_{p}
\end{aligned}
$$

Therefore, the transfer function of the proportional controller is kp .
where, $U(S$) is the laplace transform of the actuating signal $u(t)$..
EMs) is the laplace transform of the error signal est)
kp is the proportionality constant.
The block diagram of the unity negative feedback closed loop control system along with the proportional controller is shown in the following figure.

The proportional controller is used to change the transient response ap per the requirement.
2. Derivative Controller: \qquad
The derivative controller produces an output, which is derivative of the error signal.

$$
u(t)=k_{D} \frac{d e(t)}{d t}
$$

Applying laplace transform on both sides

$$
\begin{aligned}
U(S) & =K_{D} S E(S) \\
\Rightarrow \frac{U(S)}{E(S)} & =K_{D} S
\end{aligned}
$$

Therefore the transform function of the derivative controller is KDS.
Where, K_{D} is derivative constant.
The block diagram of the unity negative feedback closed wop control system along with the derivative controller is shown in the following figure.

\rightarrow The derivative controller is used to make the unstable control system into a stable one.
3. Integral controller:-

The integral controller produces an output, which is integral of the error signal.

$$
u(t)=k_{I} \int e(t) d t
$$

Apply laplace transform on both the sides:

$$
\begin{aligned}
U(s) & =\frac{K_{I} E(s)}{s} \\
\Rightarrow \frac{U(s)}{E(s)} & =\frac{K_{I}}{s}
\end{aligned}
$$

Therefore,
The transfer function of the integral controller is $\frac{k_{I}}{3}$.
Where, K_{I} is the integral constant.
The block diagram of the unity negative feedback closed Loop control system along with the integral controller is shown in the following figure.

\rightarrow The integral controller is used to decrease the steady state error.

Effect of feedback on overall gain and stability:-

1. Effect of feedback on overall gain:-

The overall transfer function in an open loop system is $\quad G(s)=\frac{C(S)}{R(s)}$
closed loop $\frac{C(s)}{R(s)}=\frac{G(s)}{1+G(s) \cdot H(s)}$

$$
\frac{1}{1+G(5) \cdot H(s)}
$$

2. Effect of feedback on stability:

For open loop system,

$$
q(s)=\frac{k}{s+t}
$$

So, the pole is located at $s=-t$
For closed loop system,

$$
\frac{c(s)}{R(u)}=\frac{k}{s+(t+k)}
$$

So, the pole is located at $-(t+k)$
Hence feedback controls the time response by adjusting? the location of poles.

The stability depends on the location of pole. Hence, we can say feedback effects the stability. Realisation of controllers (P, PI, PD, PID) with op-amp:-
(1) Proportional controller: R_{2}

(2) PI controller:-

(3) PD controller :

4. PID controller:

Assignment -6

1. What are the different types of controllers?
2. What is proportional controller?
3. What happens when a derivative controller is applied to a control system.
4. What is the effect of. feedback on overall gain and stability?
5. Stale different types of controllers with block diagram and represent them mathematically.
6. Realise $P, P D, P I$ and $P I D$ controllers using $O P$-amp.

Chapter-7
Stability concept and Root Locus Method

Syllabus: Effect of location of poles on stability, Rout Hunwitz stability criterion, stops for Root locus method, Root locus, method of design (simple problem)

Stability is a very important characteristics of the transient performance of a system. Any working system is designed consiclering its stability. Therefore all instruments are stable with in a boundary of parameter variations.

A linear time invarient (LTI) system is stable if the following two conditions are satisfied.
(i) When the system is excited by a bounded input, output is also bounded.
(ii) In the absence of the input, the output tends towards zero irrespective of initial conditions. This type of stability is called asymptotic stability.
Effect of location of poles on stability:-
Location of poles has direct effect on stability. The entire s-plane is divided into three categories
(1) Left half plane (LHP)
(2) Jo axis
(3) Right half plane (RHP)
(1) Left half plane poles:-

If poles are present (i) on real axis and simple
(ii) on real axis and multiple
(iii) Complex conjugate and simple

For all these conditions the system is stable.
2. JW axis:-

If the poles are (i) complex and simple
(ii) Complex and multiple
(iii) at origen and simple
(iv) at origen and multiple.

In these case the system is always unstable.
3. Right half plane poles:-

If the poles are (i) one real axis and simple
(ii) on real axis and multiple
(iii) Complex conjugate and simple

In this case, the system is always unstable.
Stability of control system:
A linear time invariant (LT1) system is stable, unstable or marginally stable depending upon the
situation. situation.
A. Stable system:-

All the roots of characteristic y equation lie on the left half of s-plane, then for a bounded input, the response is bounded and the system is stable.

(root lie on left half of s-plane)
B. Unstable System

If any root of characteristic equation lies the right half of s-plane, then the system response is unbounded for a bounded input and the system is unstable.

(Roots on right half of s-plane)
C. Marginally stable system:
if roots of characteristic y equation lie on left half of s-plane except one or more repeated roots on imaginary (jJ axis), then the system is marginally stable.
$\uparrow j \omega$

(roots in imaginary axis and left half of s-plane)

Problem: Block diagram of a unity feedback control system is

Find the choracterisficy equation and its coefficients.
Ans: Hence,

$$
\begin{aligned}
& G(s)=\frac{20}{(s+1)(s+5)} \\
& H(s)=1
\end{aligned}
$$

The overall transfer function is

$$
\begin{aligned}
\frac{C(s)}{R(s)} & =\frac{G(s)}{1+4(s) \cdot H(s)} \\
& =\frac{\frac{20}{(s+1)(s+5)}}{1+\frac{20}{(s+1)(s+5)} \cdot 1} \\
& =\frac{20}{(s+1)(s+5)+20} \\
& =\frac{20}{s^{2}+s+5 s+5+20} \\
& =\frac{20}{s^{2}+6 s+25}
\end{aligned}
$$

So, the characteristic, equation is $s^{2}+6 s+25=0$ Coefficients of this equation are 1,6 and 25 .

Problem: Characteristic equation of a control system is

$$
s^{2}+6 s+8=0
$$

Find the following :
(i) Order of the system.
(ii) Coefficients of characteristics equation
(iii) Roots of characteristics equation
(iv) Poles of transfer function
(v) Stability of system.

Ans: Characteristic equation is $s^{2}+6 s+8=0$
(i) Highest power of ' s ' is 2 . So it is a second order system.
(ii) coefficients of characteristic equation are 1,6 and 8 .
(iii)

$$
\begin{aligned}
& s^{2}+6 s+8=0 \\
\Rightarrow & (s+2)(s+4)=0 \\
\Rightarrow & s=-2 \text { and } s=-4
\end{aligned}
$$

Roots of characteristic equation ore -2 and -4 .
(iv) Poles of transfer function is same a) roots of characteristic equation.

$$
\text { Poles are }-2 \text { and }-4 \text {. }
$$

(v) Roots of charactenstics equation are real and negative, hence, they lie in the left half of s-plane, so, the system is stable.

Problem: state the stability of following system whore roots of charactenstics equation are given below.
(i) $-2,3$
(ii) $-2.5,-8.2$
(iii) $\pm j 2$
(iv) $-3 \pm j^{4},-2,-4$
(v) $\pm j 3.5,5$
(vi) $\pm j 6,-2,-3$

Ans: (i) $-2,3 \rightarrow$ unstable
(ii) $-2.5,-8.2 \rightarrow$ stable
(iii) $\pm j 2 \rightarrow$ marginally stable
(iv) $-3 \pm j 4,-2,-4 \rightarrow$ stable
(v) f) $3.5,5 \rightarrow$ unstable
(vi) $\pm j 6,-2,-3 \rightarrow$ marginally stable.

Routh-Hurwitz stability Criterion
(i) Hurwitz Stability criterion:-
The characteristics equation of a $n^{\text {th }}$ order system is given by

$$
a_{0} s^{n}+a_{1} s^{n-1}+\cdots+a_{n}=0
$$

Hurwitz stability criteria is based on formulation of Hurvitz determinant.

It is a $n \times n$ determinant.
In Hurwitz determinant, each row is obtained by substituting $n=1,2, \cdots n$ whore indices with negative numbers or larger then n are replaced by zero.

These determinants are.

$$
\begin{aligned}
& \Delta_{1}=a_{1} \\
& \Delta_{2}=\left|\begin{array}{ll}
a_{1} & a_{0} \\
a_{3} & a_{2}
\end{array}\right| \\
& \Delta_{3}=\left|\begin{array}{lll}
a_{1} & a_{0} & 0 \\
a_{3} & a_{2} & a_{1} \\
a_{5} & a_{4} & a_{3}
\end{array}\right|
\end{aligned}
$$

Mathematically,
The necessary and sufficient condition for stability as per Herwitz criterion is

$$
\begin{gathered}
\Delta_{1}=a_{1}>0 \\
\Delta_{2}>0 \\
\Delta_{3}>0 \\
\vdots \\
\Delta_{n}>0
\end{gathered}
$$

If $\Delta n-1=0$ then the system is marginally stable.

Problem: Characteristic y equation of a fourth order. system is

$$
s^{4}+8 s^{3}+18 s^{2}+16 s+5=0
$$

Form Humwitz determinant and find the stability of the system applying Hurwitz criteria.
Ats: characteristic equation is

$$
s^{4}+8 s^{3}+18 s^{2}+16 s+5=0
$$

The order of the system is 4 .
Nimitz determinant is

$$
\left|\begin{array}{llll}
a_{1} & a_{0} & 0 & 0 \\
a_{3} & a_{2} & a_{1} & a_{0} \\
a_{5} & a_{4} & a_{3} & a_{2} \\
a_{7} & a_{6} & a_{5} & a_{4}
\end{array}\right|
$$

Here, $a_{0}=1, \quad a_{2}=8, \quad a_{2}=18, a_{3}=16, a_{4}=5 \ldots$
coefficient higher than n is.

$$
a_{5}=a_{6}=a_{7}=0
$$

So, the determinant is formed as

$$
\left|\begin{array}{cccc}
8 & 1 & 0 & 0 \\
16 & 18 & 8 & 1 \\
0 & 5 & 16 & 18 \\
0 & 0 & 0 & 5
\end{array}\right|
$$

$$
\begin{aligned}
& \Delta_{1}=8>0 \\
& \Delta_{2}=\left|\begin{array}{cc}
8 & 1 \\
16 & 18
\end{array}\right|=8 \times 18-16 \times 1=128>0
\end{aligned}
$$

$$
\begin{aligned}
\Delta_{3} & =\left|\begin{array}{ccc}
8 & 1 & 0 \\
16 & 18 & 8 \\
0 & 5 & 16
\end{array}\right| \\
& =8(18 \times 16-8 \times 5)-16(1 \times 16-0 \times 5)+0(1 \times 8-18 \times 0) \\
& =1728 \times 0 \\
\Delta_{4} & =\left|\begin{array}{cccc}
8 & 1 & 0 & 0 \\
16 & 18 & 8 & 1 \\
0 & 5 & 16 & 18 \\
0 & 0 & 0 & 5
\end{array}\right| \\
& =5\left|\begin{array}{ccc}
8 & 1 & 0 \\
16 & 18 & 8 \\
0 & 5 & 16
\end{array}\right| \\
& =5 \times 1728 \times 0
\end{aligned}
$$

All four determinants are positive. Hence, the system is stable as per Hurwitz stability criteria.
2. Rout Stability Criterion:

Rout Array - The rout array is determined by arranging coefficients of characteristics equation in two rows.

The characteristic equation is

$$
\begin{aligned}
& a_{0} s^{n}+a_{1} s^{n-1}+\cdots+a_{n}=0 \\
& s^{n}: a_{0} a_{2} a_{4} \cdots \\
& s^{n-1}: a_{1} a_{3} a_{5}
\end{aligned}
$$

$$
\begin{aligned}
& s^{n}: a_{0} \quad a_{2} \quad a_{4} \\
& s^{n-1}: \quad a_{1} \quad a_{3} \quad a_{5} \\
& s^{n-2}: b_{1} \quad b_{2} \cdot b_{3} \\
& s^{n-3}: c_{1} \quad c_{2} \quad c_{3} \\
& s^{2}: \\
& S^{1}: \\
& S^{0}: a n \\
& b_{1}=\frac{\left|\begin{array}{ll}
a_{0} & a_{2} \\
a_{1} & a_{3}
\end{array}\right|}{a_{1}}=\frac{a_{1} a_{2}-a_{0} a_{3}}{a_{1}} \\
& b_{2}=\frac{\left|\begin{array}{ll}
a_{0} & a_{4} \\
a_{1} & a_{5}
\end{array}\right|}{a_{1}}=\frac{a_{1} a_{4}-a_{0} a_{5}}{a_{1}} \\
& c_{1}=\frac{\left|\begin{array}{cc}
a_{1} & a_{3} \\
b_{1} & b_{2}
\end{array}\right|}{b_{1}}=\frac{b_{1} a_{3}-a_{1} b_{2}}{b_{1}} \\
& c_{2}=\frac{\left|\begin{array}{ll}
a_{1} & a_{5} \\
b_{1} & b_{3}
\end{array}\right|}{b_{1}}=\frac{b_{1} a_{5}-a_{1} b_{3}}{b_{1}}
\end{aligned}
$$

Problem: Determine the stability of a system with characteristic equation

$$
s^{4}+8 s^{3}+18 s^{2}+16 s+5=0
$$

Ans: All the coefficients of the equation are positive and there is no missing terms. So, it satisfy the necessary condition for stability. Forming Rout array.

$$
\begin{array}{cccc}
s^{4} & 1 & 18 \\
s^{3} & 8 & 16 & 5 \\
s^{2} & \frac{8 \times 18-16 \times 1}{8}=16 & \frac{8 \times 5-1 \times 0}{8}=5
\end{array}
$$

$s^{\prime} \quad \frac{16 \times 16-8 \times 5}{16}=\frac{27}{2}$
$s^{0} \quad \frac{27}{2} \times 5-0$

$$
\frac{27}{2}=5
$$

The elements of first column of Routh array are all positive and hence the system is stable.
Problem: Find the stability of, a system with characteristics equation

$$
3 s^{4}+10 s^{3}+5 s^{2}+5 s+2=0
$$

Ans: The characteristic equation satisfies the necessary condition for stability given all the coefficient are positive and non-zero. Rout array is fromed as.
s^{4}
s^{3}

$$
10_{2}
$$

51
$0 \leftarrow$ Dividing by
$s^{2} \quad \frac{2 \times 5-3 \times 1}{2}=\frac{7}{2} \quad \frac{2 \times 2-3 \times 0}{2}=2 \quad 0$
$s^{\prime} \quad \frac{\frac{7}{2} \times 1-2 \times 2}{\frac{7}{2}}=\frac{-1}{7}$

$$
0
$$

s^{0}

By Observing the $18 t$ column of Rout cray, it -1 (term $\frac{7}{2}$, to $-\frac{1}{7}$ and $\frac{-1}{7}$ to 2$)$. So the system is unstable.

Steps for root locus Method :
Root locus of a control system is a plot of the roots of the characteristic equation when gain k is varied from zero to infinity.

Root locus for first order system:-
consider a simple first order system.

(A first order system)

The open loop transfer function of this system is

$$
G(s) \cdot H(s)=\frac{k s}{s+1}
$$

The open loop transfer function has a pole at $S=-1$ and zeno at $s=0$.

The characteristic equation of the system is

$$
\begin{aligned}
& 1+G(s) \cdot H(s)=0 \\
\Rightarrow & 1+\frac{k s}{s+1}=0 \\
\Rightarrow & \frac{s+1+k s}{s+1}=0 \\
\Rightarrow & s(k+1)+1=0 \\
\Rightarrow & s=\frac{-1}{k+1}
\end{aligned}
$$

The root of choractinstic equation is $s=-\frac{1}{k+1}$
When k varies from 0 to \&, the root is negative and real and hence lie on σ axis on left half of s-plane.
fork $=0$, starting point of root locus
For $k=\infty, s=0$; and point of root locus.
so, the root locus starts at $s=-1$ for $k=0$ and ends at $s=0$ for $k=6$.
we can say that root locus starts from open wop pole and ends at open loop zeno.

No. of open loop
Pole $=p=1$
No. of open loop
zeros : $z=1$
No. of root locus, branches

$$
N=1 .
$$

Procedure to plot root locus:
The following steps are to be taken to plot root locus of a system having an open loop transfer function $G(s)$. Hes) following rules.

1. The root locus is symmetrical about the real axis.
2. Originating point Root locke starts from open loop poles for $k=0$.
3. Terminating point: Root locals terminates at either on open loop pole or infinity for $k=\infty$.
4. Number of branches of root locus: (N)

$$
\begin{array}{lll}
N=P & \text { if } & P>z \\
N=z & \text { if } z>p . \\
N=p=z & \text { if } p=z
\end{array}
$$

5. Root low on real axis: A section of real axis is a port of root locus if sum of number of open loop poles and zeros to the right of this section is odd.
6. Centroid angle of asymptotes:

Asymptotes: $(p-2)$ branches of root loci tend to infinity along a set of straight line known as asymptotes
(a) No. of asymptotes $=p-2$
(b) Centroid of asymptotes $\left(\sigma_{a}\right)$: All asymptotes radiating out from a single point on real axis. This point is called centroid $\left(\sigma_{A}\right)$

Sum of real part of

$$
\sigma_{A}=\text { open loop poles }
$$

sum of real port
\qquad

$$
p-z
$$

(c) Angle of asymptotes (ϕ): The asymptotes make an angle with real axis and is given by

$$
\phi=\frac{(2 n+1) 180}{p-2} \quad(\text { where }, n=0,1,2 \ldots)
$$

7. Intersection of root locus with imaginary axis:

This is determined using Rowth criteria.
8. Break away point: The break away point, is determined from the solution of $\frac{d k}{d s}=0$.
9. Angle of departure from complex pole: It is given by

$$
\phi_{d}=180^{\circ}+\theta
$$

10. Angle of arrival at complex zeros: it is given by

$$
\phi_{a}=180^{\circ}-\theta
$$

The steps given above are sufficient to plot root lowe for a given open wop transfer function.

Problem: Open loop tramper function of a control system is

$$
q(s) \cdot H(s)=\frac{k}{s(s+6)}
$$

Draw the root locus.
Ans: The transfer function is

$$
G(s) \cdot H(s)=\frac{k}{s(s+6)}
$$

There are no open loop zero. The open loop poles are at $s=0$ and $s=-6$.

1. the root locus starts at $s=0$ and $s=-6$ for $k=0$.
2. As there is no open loop zero, so root loci terminates at α.
3. Number of root locus branches $=N=P=2 . \quad(\because P>$ z)
4. Root locus on real axis lies between $s=0$ to $s=-6$.
5. Break away point?
: It is obtained by solving $\frac{d k}{d s}=0$
charactenstic equation is

$$
\begin{aligned}
& 1+G(s) . H(s)=0 \\
\Rightarrow & 1+\frac{k}{s(s+6)}=0 \\
\Rightarrow & s(s+6)+k=0 \\
\Rightarrow & s^{2}+6 s+k=0 \\
\Rightarrow & k=-s^{2}-6 s \\
\frac{d u}{d s}= & \frac{d}{d s}\left(-s^{2}-6 s\right)=-2 s-6=0 \\
\Rightarrow & s=\frac{b}{-2} \Rightarrow s=-3
\end{aligned}
$$

So, $S=-3$ is a break away point.
6. Angle of asymptotes are given by

$$
\begin{aligned}
\phi & =\frac{(2 n+1) 180}{p-2}, \quad n=0,1 \\
& =\frac{180}{2}, \frac{3 \times 180}{2} \\
& =90^{\circ}, 270^{\circ}\left(o r-90^{\circ}\right)
\end{aligned}
$$

7. Centroid:

$$
\begin{aligned}
\sigma_{A} & =\frac{\text { real part of poles }- \text { real pert of }}{\text { zens. }} \\
& =\frac{(0-6)-0}{2} \\
& =\frac{-6}{2} \\
& =-3
\end{aligned}
$$

The required root locus is plotted ar

Assignment - 7 .
un u un mu

1. What do you mean be root locus?
2. What is Routh-Hurwite stability criterion?
3. What is the need of root locus in control system?
4. Write down the rules for constructing root locus.
5. Determine the stability of a system with charactenitie' equation

$$
s^{4}+8 s^{3}+18 s^{2}+16 s+5=0
$$

6. Open wop transfer function of a control system is

$$
q(s) \cdot H(s)=\frac{k}{s(s+6)}
$$

Draw the root las.

Chapter -8
mupumur
Frequency Response analysis and Bode plot
Syllabus: Frequency response, Relationship between time and frequency response. Methods of frequency response, poler plot and steps for polar plot, Bode plot and steps for bode plot, stability. in frequency domain, Gain margin, Phase margin, Nyguist plots, Nyquist stability criterion, simple problems as above.

Frequency Response:
uru min mus
The frequency response of a system is defined a) the steady state response of the system to a sinusoidal input signal.

$$
\frac{C(s)}{R(s)}=\frac{w_{n^{2}}}{s^{2}+2 \delta \omega_{n} s+w_{n}^{2}}
$$

Putting $s=j \omega$,

$$
\begin{aligned}
\frac{C(j \omega)}{R(j \omega)} & =\frac{\omega_{n}^{2}}{(j \omega)^{2}+2 \delta \omega_{n}^{\prime} j \omega+\omega_{n}^{2}} \\
& =\frac{\omega_{n}^{2}}{\omega_{n}^{2}-\omega^{2}+j 2 \delta \omega_{n} \omega} \\
& =\frac{1}{\left(1-\frac{\omega^{2}}{\omega_{n}^{2}}\right)+j 2 \delta\left(\frac{\omega}{\omega_{n}}\right)}
\end{aligned}
$$

Let $u=\frac{w}{\omega_{n}}$, then

$$
\frac{C(j \omega)}{R(j \omega)}=\frac{1}{\left(1-u^{2}\right)+j 2 \delta u}
$$

Now, $M(j \omega)=|M(j \omega)|\langle M(j \omega)$
where, $|M(j w)|=\frac{1}{\sqrt{\left(1-u^{2}\right)^{2}+(2 \delta u)^{2}}}$

$$
\theta=-\tan ^{-1} \frac{28 u}{1-u^{2}}
$$

Methods of frequency Response:
There are three types of methods in frequency domain. response. They ore

1. Bode Plot
2. Polar plot
3. Nyquist plot.

These methods are uned in frequency domain to find out the stability of the system.
Defination of frequency domain specifications:-
The frequency domain refers to the analysis of mathematical functions or signals with respect to frequency rather than time.

Resonant peak (Mr):-
Maximum value of $M(j \omega)$ when ω is varied from O to $\&$.
where,

$$
\begin{gathered}
\frac{c(s)}{R(s)}=\frac{G(s)}{1+G(s) \cdot H(s)}=M(s) \\
M(j \omega)=\frac{G(j \omega)}{1+G(j \omega) \cdot H(j \omega)}
\end{gathered}
$$

Response frequency (ω_{γ}):
The frequency at which the peak resonance (Mr) is attained is known a) response frequency.
cut-off frequency $\left(\omega_{c}\right)$:-
The frequency at which $M(j \omega)$ has a value $\frac{1}{\sqrt{2}}$. It is the frequency at which the magnitude is 3 dB below its zero frequency value.
Band width (W_{b}):-
It is the range of frequency in which the magnitude of a closed loop system is $\frac{1}{\sqrt{2}}$ times of Mr .
Phase cross-over frequency :-
The frequency at which phase plot crosses -180°.
Gain cross over frequency:-
The frequency at which gain or magnitude plot crosses $O d B$ line.

Gain Margin (GM):-
It is the increase in open loop gain in $d B$ required to drive the closed loop system to the verge of instability.
Phase Margin (PM):-
It is the increase in open loop phase shift in degree required to drive the closed loop system to the verge of instability.
Polar Plot and steps for polar plot:wu wu wu auk in hum hus

Polar Plot:-
It is a graphical method. of determining stability of feedback control systems by using the polar plot of their open loop transfer functions.

It is a sinusoidal transfer function $G(j \omega)$ is a plot of magnitude of $G(j \omega)$ versus the phase angle of $G(j \omega)$ on polar plot coordinates as ' ω ' is varied from zero to infinity.

Therefore, the locus of vectors $|G(j \omega)|\langle G(j \omega)$ as ω varied from zero to infinity.
Steps for polar plot :-
Step-1: Determine the transfer function $G(8)$ of the system.: step-2: Put $s=j \omega$ in the transfer function to obtain $(G(\omega)$).
Step-3: $A+\omega=\infty$ calculate $\mid G(j \omega)^{\prime}$, by $\lim _{\omega \rightarrow 0}|C(j \omega)|$ and

$$
\lim _{\omega \rightarrow \infty}|G(j \omega)| .
$$

Step-4: Calculate the phase angle of $g(j \omega)$ at $w=0$ and $\omega=\omega$ by $\lim _{\omega \rightarrow 0}\left\langle G(j \omega)\right.$ and $\lim _{\omega \rightarrow \infty}\langle G(j \omega)$.
Step-5: Rationalize the function $q(j(\omega)$ and separate the real and imaginary parts.
Step-6: Equate the imaginary part $I_{m}|G(j \omega)|$ to zero and determine the frequencies at which plots intersects the imaginary axis and calculate the value of $G(j \omega)$ at the point of intersection by substituting the determined value of frequency in the rationalized expression of $G(j \omega)$.
Step-7: Equate the real part $\operatorname{Re}|G(j \omega)|$ to zen and determine the frequencies at which plots intersects the imaginary axis and calculate the value of $G(j w)$ at the point of intersection by substituting the determined value of frequency in the rationalized expression of $G(j \omega)$.
Step-8: Sketch the polar plot with the help of above information.

Bode Plot and steps for Bode plot:-
Bode plot :-
It consists of, (i) The plot of the logarithm of the magnitude in $d B$ of a sinusoidal transfer function vs. frequency in logarithmic scale.
(ii) The plot of phase angle vs. frequency in logarithmic scale.

Steps for Bode plot:-
Step-1: To identify the corner frequency.
Step-2: Draw the asymptotic magnitude plot. The slope weill change at each corned frequency by $+20 \mathrm{~dB} / \mathrm{dec}$. for zero and $-20 \mathrm{~dB} / \mathrm{dec}$ for pole. For complex conjugate pole and zen the slope will change by $\mp O d B /$ decode.
Step-3: ©) For type 0 system draw a line having unto 1 st (lowest) comer frequency having $0 \mathrm{~dB} / \mathrm{dec}$. slope.
(b). For type 1. system draw a line having stope $-20 \mathrm{~dB} /$ dec upto $\omega=K$. Mark $1^{\text {st }}$ (lowest) comer Frequency.
C) For type 2 system draw the line having slope -40.dB/dec upto $\omega=\sqrt{k}$ and so m: Marts $1^{\text {st }}$ corner frequency.
Step -4: Draw a line unto $2^{\text {nd }}$ corner frequency by adding the slope of next pole or zen to the previous slope and soon.
Step-5: Calculate phase angle for different values of w from the equation and join all points.

Stability in frequency domain :-
The Nyquist criterion is a semigraphical method that determines the stability of closed loop system by investigating the properties of the frequency domain plot of the loop transfer function $G(s)$. Hes).

Gain Margin and Phase Margin:mu margin and Phase Margin:
Gain Margin:
nu mung The greater the gain margin, the greater the stability of the system. The gain margin refers to the amount of gain, which can be increased or decreased without making the system unstable. It is usually expressed as a magnitude in $d B$.

We can usually read the gain margin directly from the Bode plot. This is done by calculating the vertical distance between the magnitude curve and the x-axis at the frequency where the Bode phase plot $=180^{\circ}$. This point is known a) the phase crossover frequency.

Gain Margin formula :-
The formula for gain margin can be expressed as

$$
G M=0-G d B
$$

Where, G is the gain. This is the magnitude (ion. (B) a) read from the vertical axis of the magnitude plot at the phase cross over frequency.

Eg: If the gain (9) is 20 .
Hence, using our formula for gain margin,

$$
\begin{aligned}
\text { The gain margin } & =0-20 \mathrm{~dB} \\
& =-20 \mathrm{~dB}
\end{aligned}
$$

It is an unstable system.

Phase Margin:-
The greater the phase margin, the greater will be the stability of the system. The phase margin refers to the amount of phase, which can be increased or decreased without making the system unstable. It is usually expressed as a phase in degrees.

We can usually read the phase margin directly from the Bode plot. This is done by calculating the vertical distance between the phase curve and the x-axis at the frequency where the Bode magnitude p lot $=O d B$. This point is known as the gain cross over frequency.

Phase margin formula:-
The formula for phase margin (PM4) can be expressed a)

$$
P M=\phi-\left(-180^{\circ}\right)
$$

where, ϕ is the phase lag. This is the phase a) read from the vertical axis of the phase plot at the gain cross over frequency.

Eg: if the phase lag is -189°.
Hence using the formula for phase margin

$$
\begin{aligned}
P M & =-189^{\circ}-\left(-180^{\circ}\right) \\
& =-9^{\circ} \quad \text { (unstable) }
\end{aligned}
$$

If the phase lag is -120°.
Hence, using the formula for phase margin

$$
\begin{aligned}
P M & =-120^{\circ}-\left(-180^{\circ}\right) \\
& =60^{\circ} \quad(\text { stable })
\end{aligned}
$$

Nyquist Plots and Nyquist Stability Criteria:-
A closed loop system is stable if the contour Fat of open-loop transfer function $G(5) \mathrm{H}(5)$. Corresponding to Nyguist contour in the s-plane encricles the point $(-1+j 0)$ in counter clockicise direction as many times a) the number of open loop transfer function poles on right half of s-plane.
Mathematically;
In order to apply the Nyguist eriterion a special contour called the Nyquist, contour is chosen so, that it encloses the entire right half side of the jo axis of the s plane. When the s-plane contour c is the Nyquist Contour, the Nyguist Stability criterion is given by

$$
Z=N+P
$$

where, $P=$ Number of poles of $G(1)$. H(s) or $F(s)$ in the right-half of the splane
$N=$ Number of clockwise encirclements of $(-1, j 0)$ point in the GH plane or of the origin in $F(1)$, plane by the Nyquist path.
$z=$ number of zeros of $F(1)=1+G(s) \cdot H(s)$ in the right half of the s.plane.

To make a closed loop system stable, there must not be any zero in the right half of s-plane. Therefore $z=0$
that is $\quad N=-P$
Assignment - 8

1. What do you mean by polar plot?
2. What do you mean by Bode plot?
3. What do you mean by Nyquist stability
criterion? criterion?
4. State the rules for plotting a polar plot?
5. Write down the procedure to draw a bode plot?
b. What is the need of a Nyquist plot, explain with a suitable example.

Chapter- 9
nupumun
State Variable Anaysis
Syllabus: Concept of state, state variable, state model, state models for linear continuous time functions (simple)
State space analysis is an excellent method for the design and analysis of control systems. The conventional and old method for the design and analysis of control systems is the transfer function method. The transfer function method for design and analysis had many drawback.
Advantages of state variable analysis:
\rightarrow It can be applied to non-linear system.
\rightarrow It can be applied to thee invarient systems.
\rightarrow It can be applied to multiple input multiple. output systems.
\rightarrow Its giver idea about the internal state of the system.
Concept of state:-
The state of a control system at time $t=$ to $_{0}$ is the smallest set of variables called state variables such that the knowledge of the variables along with the knowlede of the inputs at $t=$ to is sufficient to determine the output dynamic y of the system at any time $t \geqslant$ to.

Concept of state variable:nowt mu uru vunurn

The state variables of a dynamic system are the smallest set of variables that determine the state of the dynamic system, that is, the state
variables are the minimal sot of variables such variables are the minimal sot of variables such that the knowledge of there variables at any initial time $t=$ to together with the knowledge of the inputs for $t \geqslant t 0$ is sufficient to completely? determine the behaviour of the system for any time $t \geqslant$ to.

State Model :
Lets consider a multi input and multi output system: having ' r ' inputs $u_{1}(t), u_{2}(t) \ldots . . u_{\gamma}(t)$
in number of outputs $y_{1}(t), y_{2}(t) \cdots y_{m}(t)$
' n ' number of state variables $x_{1}(t), x_{2}(t) \ldots x_{n}(t)$
Then the state model is given by state and
output equation

$$
\begin{align*}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)+D u(t) \tag{outputequation}
\end{align*}
$$

Where, A is state matrix of size $(n \times n)$
B is the input, matrix of size $(n \times r)$
C is the output matrix of size $(m \times n)$
D is the direct transmission matrix of $\operatorname{siz} 0(m \times 0)$
$x(t)$ is the state vector of size $(n \times 1)$
$y(t)$ is the output vector of size $(m \times 1)$
$U(t)$ is the input vector of size $(r \times 1)$

State Model for linear continuous Time functions:
The block diagram of the linear, continuous time functions is represented by following equations.

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)+D u(t)
\end{aligned}
$$

(Block diagram of the linear, continuous time)

It ha) multiple number of input, output and state variables, this hay been represented by thick arrow. Therefore n, parallel integrators must be present a) there are n state variables where the output of each integrator is a separate variable.

Consider the following series RLC circuit. It is having an input voltage $v_{i}(t)$ and the current Howing through the circuit is $i(t)$.

There are two storage elements (inductor and capacitor) in this circuit. So, the number of the state variables is equal to two and these state variables are the current flowing through the the inductor $i(t)$ and the voltage across capacitor $V_{c}(t)$.
From the circuit the output voltage,
$V_{0}(t)$ is equal to the voltage across capacitor, - $V_{e}(t)$.

$$
V_{0}(t)=V_{c}(t)
$$

Apply KVL around the coop,

$$
\begin{aligned}
& V_{c}(t)=R i(t)+L \frac{d i(t)}{d t}+v_{c}(t) \\
& \Rightarrow \frac{d i(t)}{d t}=-\frac{R i(t)}{L}-\frac{V_{c}(t)}{L}+\frac{V_{i}(t)}{L}
\end{aligned}
$$

The voltage across the capacitor is -

$$
V_{c}(t)=\frac{1}{c} \int i(t) d t
$$

Differentiate the above equation with respect to time

$$
\frac{d V_{c}(t)}{d t}=\frac{i(t)}{c}
$$

State vector, $X=\left[\begin{array}{l}i(t) \\ v_{e}(t)\end{array}\right]$

We can arrange the differential equation y and output equation into the standard form of state space model a)

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{c}
\frac{d i(t)}{d t} \\
\frac{d v(t)}{d t}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{R}{L} & -\frac{1}{L} \\
\frac{1}{c} & 0
\end{array}\right]\left[\begin{array}{l}
i(t) \\
V_{c}(t)
\end{array}\right]+\left[\begin{array}{l}
\frac{1}{L} \\
0
\end{array}\right]\left[V_{c}(t)\right] \\
& y=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{c}
i(t) \\
V_{c}(t)
\end{array}\right]
\end{aligned}
$$

where,

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
-\frac{R}{L} & \frac{-1}{L} \\
\frac{1}{C} & 0
\end{array}\right] \\
& B=\left[\begin{array}{l}
\frac{1}{L} \\
0
\end{array}\right] \\
& C=\left[\begin{array}{ll}
0 & 1
\end{array}\right] \\
& D=[0]
\end{aligned}
$$

Assignment - 9

1. What do you mean by state variable?
2. How the state variable electrical circuit is represented?
3. Write down the state space representation of w LTI system?
4. Derive the state space representation of a series RLC circuit.
