1HAD SLIGA						
STAKSUGUDA ENGINEERING SCHOOL JHARSUGUDA						
Name of the Faculty: D mechanical Engineering DEPARTMENT						
Course code .: K. K. Maharria, Himalaya Meher	Session: 2022-23					
Programe: Diploma	Course Name: DME					
Semester: 5th	Department: Mechanical					
Branch:MECHANICA1	Section:M1/M2					

Week	Period	Unit		
1.	1.	Unit	Hours	Topic to be Covered
				Introduction to Machine Design and Classification of machine
	2.	-	12	design
	3.			mechanical properties of engineering materials used in design
	4.			physical properties of engineering materials used in design
				Definition of working stress, yield stress, ultimate stress &
2.	5.	1		factor of safety
	6.			stress –strain curve for C.I.
	7.			stress –strain curve for C.I
	8.	-		Modes of Failure :By elastic deflection
3.	9.	-		Modes of Failure : general yielding
	10.	_		Modes of Failure : fracture
	11.	_		factors governing the design of machine elements.
	12	_		design procedure
4.	13			design procedure
	14			Joints and their classification
	15	2		State types of welded joints
	16			State advantages of welded joints over other joints
5	10.		12	Design of welded joints for eccentric loads
2.	17.			Problem on Design of welded joints under different load
	10.			State types of riveted joints and types of rivets
	19.			Describe failure of riveted joints
6	20.			strength & efficiency of riveted joints
0.	21.			Problem on riveted joints
	22.			Problem on riveted joints
	23.			riveted joints for pressure vessel
	24.			Problem on Design of riveted joints for pressure vessel
7.	25.	3	12	function of shafts and materials for shafts
	26.			Design of solid shafts to transmit a given power at given rom
				based on a) Strength: (i) Shear stress, (ii) Combined bending
				tension Device Schuling
	27.			besign of hollow shafts to transmit a given power at given rom
				based on a) Strength: (i) Shear stress, (ii) Combined bending
				Design of a 12 b b c
	28.			besign of solid shafts to transmit a given power at given rom
			Modulus of visitiv	
				modulus of rigidity

8				
0.	29.			Design of solid shafts to transmit a given power at given rpm
				based on b) Rigidity: (i) Angle of twist, (ii) Deflection, (iii)
	20			Modulus of rigidity
_	30.			Problem on Design of Shaft
	31.			Standard size of shaft as per LS.
	22			Function of keys, types of keys & material of keys
9	32.			Describe failure of key, effect of key way
	33.			Design of rectangular sunk key considering its failure against
	2.4			shear & crushing.
	54.			Design of rectangular sunk key by using empirical relation for
	35			given diameter of shaft.
	55.			State specification of parallel key, gib bood key, take h
	36			I.S.
10.	37	4		Problem on Design of keys.
	38		12	Design of Shaft Coupling
	39			Design of Shaft Coupling
	40.	-		Requirements of a good shaft coupling
11.	41.	_		Types of Coupling.
	42.	_		Problem on Design of Sleeve or Muff-Coupling
	43.	-		Problem on Design of Sleeve or Muff-Coupling.
	44.	-		Design of Sleeve or Muff-Coupling
12	45.			Problem on Design of Sleeve or Muff-Coupling
	46.			Problem on Design of Sleeve or Muff-Coupling
	47.			Design of Clamp or Compression Coupling
	48.			Problem on Design of Clamp or Compression Coupling
13.	49.	5	12	Problem on Design of Clamp or Compression Coupling.
	50.		12	Materials used for helical spring.
	51.			Standard size spring wire. (SWG)
	52.			Terms used in compression spring.
14.	53.			Stress in helical spring of a circular wire.
	54.			Problem on Stress in helical spring of a circular wire
	55.			Deflection of the way of a circular wire
	56.			Problem on Deflection of circular wire.
15.	57.			Problem on Deflection of helical spring of circular wire
	58.			Surge in spring
	59.			Problem on bolicet
	60.			Problem on holical spring
				- Switch of fieldal spring

frequence

Signature of faculty

20

Signature of i/c HOD