LECTURE NOTES

ON
Estimation and Cost Evaluation-I
For
DIPLOMA 3rd SEMESTER
(TH. 4)
As per SCTE \& VT Syllabus

Prepared By:
Er. Swapnashish Patel
Senior Lecturer
Department of Civil Engineering Jharsuguda Engineering School, Jharsuguda

Po- Kalimandir Road, 768202
https://jesjharsuguda.org.in
introduction:-

Plinth Area:-
Plinth area is built of up covered area- of a building measured at flor level of any storey. Plinth area is calculating calculated by taking the external dimensions of the building at the floor level excluding plinth of sets if any court yard, open areas, balconies and carstilenor projections are not including in the plinth area. Supported perches (other than canstlagered) are included in the plinth area.

The following shall be included in the plinth area.
i) All fluor, ara of calls at the floor level excluding. Plinth offsets, if any.
ai) Internal stats for sanitory installations provide these do not exceed 252 m in air condition ducts, lifts etc.
ii) The area of Barsati and the area of musity at terrace level.
(v) Area of porches other than cartilayered.

The following are not included in the plinth area.
i) Area of loft
11) Internal sanitary shatts provided these are more than $252 . \mathrm{m}$. in area.
II) Under closed balconies.
iv) Towers, purrels, dames etc projecting above terrace level not forming astor at the terrace level.
v) Architectural bonds, carries otc.
vi) Sunshades, vertical oas breakers or box lower projecting cut.

Floor area/ carpet area:-
Floor area of a building is the total area of fitter area in between walls and consists of floor of all rooms verandah passage l, corrydoros, staircase room, entrance balls, witches stores, bathroom and Latrine (cue) etc. Sills of doors and opening are not included in the floor. areas occupied by walls, pillers, plaster and other intermediate. Supporters are not included in the floor area. In short floor area is equal to plinth area and minor area occupied by calls.

- For deduction of walls area frum-plinth area to obtained floor area shall include.
i) Door and other opening in wall.
ii) Intermediate pillars and supporter.
iii) Plaster-along walls excluding- 300 sू.m-in area. av) Fugs which are with in walls, bet the following shall be excluded from the walls area.
\Rightarrow Pilaster -along walls not excluding 30052 -mi n-area
\Rightarrow Fire place projecting beyond the face of walls in living
\Rightarrow Chulaplat form projecting beyond the face of wall in Kitchen.

The units of measurement and payment for various. items of works and materials:-

Principle of units for various items of works i) Mass, voluminous and thickworks shall be taken in cubic unit or volurne.
11) Shallow, thin and surface work, Shall be taken in cubic unit of in area.
iii) Long and thin works shall be taka in linear or running unit, and linear measurement shall be taken.
iv) Piece work, job work etc. shall be taken in number.

Types of estimate:-

1) Preliminary estimate of approximate of. abstract estimate or rough cost estimate:-

It is only required. For priliminary-studies of various aspects of a work or project, to decide the financial position and policy for adminstrative sanctions by the complete adminstrative authority. It is prepared from practical knowledge and cost of the similar work. This estimate is prepared showing separately the approximate cost of all important items. of wore as ait of Land, each building, roads, water supply sanitary works, electrification etc. The estimate is accumpained by abbrev report. explaining the necesicy and utility of the project and showing house the cost of separate items have been arrived.
2) Punt area estimate for building:-
3) Cube rate estimate tor building:-

This is calculated by finding the cubical of building (length x bredth x.thickness) and. multiplied it's by cube rate.
lube rate estimate is mast accurate as compared to the plinth area estimate.
4) Approximate quantity method estimate:

In this method approximate total length of walls is Found in running meter and this total leigh malliplied by the rate per running molar of wall gives a fairly accurate cost. In the mothand instruction may be derided into two parts.
i) Foundation including plinth
ii) Super structure

The, running meter cost for foundation and super structure found be ealcutated calculation. First and these running meter rate should be multiplied by the total length to wall.
5) Detailed estimate or Stem rate estimate:-

A detailed-estimate is prepared affer-it's complete set of drawing are ready. The quantity of varices items of works are worked out from such drawings and are multiplied by the parent rate of items of work to arrive at the estimate cost of the work.
6) Revised estimate:-

- Revised estimate is -a detailed estimate and is required to be prepared under any one of the Following cir cumstances.
i) When the original estimate is moluded or like to exceed by more than 5%.

11) When the experiditure on a work exceed or likely. to exceed the amount of adm adminatratie sanction by more than 10%.
(ii) When there are material deviation for the original proposal even though the cost may be mad trim the

It should be accorpoined by a comparative estimate showing the variations of each items of works. Ats quantity, rate and cost under original and revised side by side the excess or saving and reason for variation.
7) Supplement any estimate:-

If is a detailed estimate and prepared when additional works are required and supplimen the original works or when further derelopman regained during the programs of work.
8) Supplementary and revised estimate:-

When a work is partially abordoned and the estimated cost of the repairing work is less than 95% of the original work or when there are maternal deviation and changes in the design which many causes substantial saving in the estimate. Then the cost of the original estimate is revised. by the complete authority. A supplimentan and revised estimate is tim, prepared and fresh technical senction of the complete authority is obtained.
9) Annual repair and maintanance estimate:-

It is-a -detailed-estimate and is prepared to maintaining the structure of work in proper order and. sate condition.
10) Contingencies:-

It indicates inidental expencess of miscellaneous character which can not bo classified under any destinate items sub - head.
3.1. A contain air in the form of contigances of 3% to 5% of estimated cost is provided for contigencies.
ii) work charged establishment:-

It is the established which is changed to work directly. During the construction of a building or a projection a certain no. of wore supervesios. chautivelos mates etc are required to be exployed and their solaries are paid from the am to work changed established for this a percentage of $1 \frac{1}{2}$ to 2% of the estimate cost is included.

Method of estimating:-
Estimate:-
Before undertaking the construction of a project, it is neccessary to know it's - probable-cost which worked out by estimating. An estimate is a compulation or calculation of the quality required and expenditure likely to be incured in the construction of work. The estimate is the probable cost of a work and is determined the nitically by mathmatically calculation based on the planes and drawing and current rates. Approx estimate may be prepared by various method but accurate estimate is prepared by detailed estimate method.
Actual cost:-
The actual cost is of work a work is known as completion of the work.
\Rightarrow Detailed estimate consists of working out the quantities of different items of work and-thon man king out of the cost i.e. 2-stages.

Detailed measuremat of calculation of quantities. The whale work is devided into different items of work as earth work, concrete, brickwork etc and the items are classified the groped cinder different subhead and difference and measurement of each thems of work are taken cut-

Detailed of measurement form:-

Stem no	Description of perpendiculars Porticular	No	Length	Bredth	height or depth	Content of guan tity

Abstract of estimate cost:-
The cost of under item of work is-calculaked from the quantities all ready computed at work able rate and the total cast is worked out in a prescribed form. Abstract of estimate form:-

| Stem | Description of
 no | Particulars | Quantity | unit rate |
| :--- | :--- | :--- | :--- | :--- | Amount | |
| :--- |

Main items of work:-

1) Earth work
2) Plastering and painting
3) Concrete in foundation
ii) comice
4) Soiling
5) Pincers
6) Dainp proof course
7) Doors and window
8) Masonary.
9) wood work
10) Arch masonary work
11) Iron work

7 Lintels over opening
16) While washing
8) R.C.C \& R.B. won
a) Flooring and Roofing
17) Painting

Electrification $5-10 \%$ estimate cost
Water supply 8-10\% estimate cost
Degree of accuracy in building:-
Depend on the rate of teems and the unit of payment higher rate than greater accuracy.
General rules:-

1) Measurement shall be them wise For the finished then of work and the description of each items shall be held to include materials, Transport labour, Febrication, hosting fouls and plants over wads and other residental charges for finishing the work to the required shape, size, design, and specification.
2) In booking dimension the order shall be in the sequence of length, breath and height and depth or
thickness. thickness.
iii) Ald work shall be measured not subject to following tolerance unless otherwise started.
a) Dimension shall be measured to the nearest 0.1 m ie. $\operatorname{lan}(1 / 2)_{0}$
b) All shall be measured to the nearest $0.01 \mathrm{ssim}(0.1 \mathrm{ssigt})$
c) Cubic cost shall be worked up to the nearest 0.01 cum (0.1 cult)
iii. Some type of work under different condition and nature shall be separately under separate items.
v) The bill e of quantities shall fully describe the materials propertion and work manships and accurately represent the work to be exculated.
vi) Encase of structural concrete, brickwork or stone mesonery the work under the following catagonies shall be measured separately and height shall be described
a). Fum foundation to plinth level
b) From plinth level to first floor level
c) From First floor to second floor level so on.

Method of building estimate:-

1) Separate or individual wall method:

- In-this method, measure or find out the external length of walls running in the longitudinar direction generally the long walls out to out and the internal Long wall -of lengths of long walls running in the transverse direction in to in ie. short walls core should be taken. to note the difference in directions at different height due to offeset or footings.
Wong wall length out to out = centre to centre length f half breath one side t
: half breath on the other side = centreto centre lengthfone breath

Question:-
Represents the plan of superstructure wall of a single room building of $5 \mathrm{~m} \times 4 \mathrm{~m}$ and sections represents. Represent the els of the walls with foundation: Estimate the quantities of
(i) Garth work in excavation in foundation
(8) Concrete in foundation.
(3) Brick work in foxindation and plinth.
(4) Brick work in super structure
solution

2) Centre line method:

In this centre line, method sum total length of the centre lines of walls, long and short has to be found out. Find out the total length of the centre lines of coals of same type, long and short having same type of Foundation and Footings and then find the quantities by multiplying the total centre length by the respective breath and height. The method is quick but regains special attention and consideration at the junctions, meetiof pts. of partition or cross walls, etc. Here length will remain same yon excavation in foundation, for con crete in Foundation, for all Footings and for super structure.

* Circular semi circular, hexagonal, hell neheragonal etc rooms.

For these type of rooms the total centre line length of all wall. may be thud out and quantities may be calculated by multiplying respective breadth and height.

Length of centre line of one side,

$$
\ln =4+2 \times \frac{0.15}{\tan 60^{\circ}}=4+2 \times \frac{0.15}{1.732}
$$

Total centre line $=6 \times \mathrm{lm}$

Arch mesunary calculation:-
Case -1
Segmental arch with span and angle given:-
$S=$ span
$\theta=$ angle at the centre

$r=$ radius
$r m=$ mean radius
$l m=$ mean Length
$t=$ thickness of arch
b bredth of wall

$$
\begin{aligned}
& \sin \frac{\theta}{2}=-\frac{s / 2}{r} \\
& \Rightarrow r=\frac{s}{2} \times \frac{1}{\sin \frac{\theta}{2}}, r_{m}=r+\frac{8}{2} \\
& \frac{\ln }{2 \pi r n}=\frac{\theta}{360} \Rightarrow \ln =2 \pi m \times \frac{\theta}{360^{\circ}}
\end{aligned}
$$

Quantity of orth mesonary work $(Q)=$ mean length if ash x breadth of wall x thickness of

$$
\Rightarrow Q=\operatorname{lm} \times b \times t
$$

Case-2
Segmental arch of $60^{\circ} \div$
$r=s$ and $r m=r+\frac{1}{2}$
(above Figure)

$$
\begin{aligned}
& \frac{\operatorname{lm}}{2 \pi r_{m}}=\frac{60^{\circ}}{360}=\frac{1}{6} \\
& \operatorname{lm}=\frac{1}{6} \times 2 \pi r_{m}=\frac{1}{3} \pi r_{m} \\
& Q=\ln \times b \times t \Rightarrow l m=\frac{1}{3} \pi r_{m}
\end{aligned}
$$

case-3

Segmental arch with span and rise given
$r=$ radius of arch i.e. of intredas
$r m=$ radicy of mean arch
$t=$ length of arch of intradas

$l \mathrm{~m}=$ length of mean arch
From similar figure

$$
\frac{l m}{t}=\frac{\gamma_{m}}{\gamma} 07 \quad l m=\lambda \times \frac{\gamma_{m}}{\gamma}
$$

To find ' r '
$a^{2}=h(d-h)$, where $d=$ diameter of introdas

$$
\begin{aligned}
& a=\text { semichood }=\frac{1}{2} \times \text { span }=\frac{5}{2} \\
& h=\text { rise of arch (given) }
\end{aligned}
$$

Hence, ' d ' can be found

$$
\frac{r=d / 2}{r=\frac{h}{2}+\frac{s 2}{8 h}}
$$

$$
\begin{aligned}
& r_{m}=r+\frac{1}{2} \\
& l=\frac{8 b-2 a}{3} \\
& l m=l \times \frac{r_{m}}{r} \\
& Q=\operatorname{lm} \times b \times t
\end{aligned}, b=\sqrt{a^{2}+b^{2}}, a=\frac{1}{2} \times s
$$

Case -4
Semi circular arches:-

$$
s=\text { span }
$$

r = radius of arch
$m=$ mean radius
$l m=$ mean length of arch

$$
h=\text { rise }
$$

$$
\begin{aligned}
& f h=\frac{s}{2} \\
& r m=r+\frac{t}{2}=\frac{s}{2}+\frac{t}{2} \\
& l m=\pi r m=\frac{22}{7} \times\left(\frac{s}{2}+\frac{t}{2}\right) \\
& Q=\ln \times b \times t \Rightarrow l m=\pi \times\left(\frac{s}{2}+\frac{t}{2}\right)
\end{aligned}
$$

case -5
Flat arches:-
usually substends 60°

$$
\begin{aligned}
& t_{1}=\frac{t}{\sin 60}=\frac{t}{0.866}=1.15 t \\
& \lim ^{2}=5+\frac{t_{1}}{2} \\
& Q=\ln \times b \times t
\end{aligned}
$$

8. An arch of 2.5 m span substends on angle of 80° ot the centre. The thickness of arch is 30 cm and the breath of wall is 40 cm . Calculated the quantify of arch mesonary work.
PD S
Given that

$$
\begin{aligned}
& \text { Span }(s)=2.5 \mathrm{~m}, \operatorname{ang}\left(c(0)=80^{\circ}, \text { thickness }(t)=300 \mathrm{~m}\right. \\
& \text { - } \text { breath }(b)=40 \mathrm{~cm}=0.4 \mathrm{~m} \\
& \sin \frac{\theta}{2}=\frac{312}{\gamma} \\
& \Rightarrow r=\frac{9}{2} \times \frac{1}{\sin \frac{81}{2}} \\
& =\frac{2.5}{2} \times \frac{1}{0.74} \\
& =1.25 \times 1.35 \\
& \Rightarrow r=1.68 \\
& r_{m}=r+\frac{t}{2} \\
& =1.68+\frac{0.3}{2} \\
& =1.68+0.15 \\
& \Rightarrow \gamma_{m}=1.83 \\
& l m=2 \pi r n \times \frac{\theta}{360} . \\
& =2 \times 3.14 \times 1.83 \times \frac{80}{360} \\
& =2 \times 3.14 \times 1.83 \times 0.22 \\
& \Rightarrow l m=2.52
\end{aligned}
$$

Quantify of arch mesonary work $=1 m \times b \times t$

$$
\begin{aligned}
& =2.52 \times 0.4 \times 0.3 \\
& =0.80 \mathrm{~m}^{3}
\end{aligned}
$$

Q) Calculate the quantity of BW in a segmental ares of 2.2 m span, 50 cm rise and 30 cm thick. The breadth of the wall is 30 cm .

MS
Given that

$$
\begin{aligned}
& \text { Span }(s)=2.2 \mathrm{~m} \\
& \text { Rise }(h)=50 \mathrm{~cm}=0.5 \mathrm{~m} \\
& \text { Thickness }(t)=30 \mathrm{~cm}=0.3 \mathrm{~m} \\
& \text { Breadth }(b)=30 \mathrm{~cm}=0.3 \mathrm{~m} \\
& a=\frac{1}{2} \times 5 \quad b=\sqrt{a^{2}+h^{2}}=\sqrt{(1.1)^{2}+(0.5)^{2}} \\
& =\frac{2.2}{2} \\
& \Rightarrow a=1.1 \\
& r=\frac{h}{2}+\frac{s^{2}}{8 h} \\
& =\frac{0.5}{2}+\frac{(2.2)^{2}}{8 \times 0.5} \\
& \therefore=0.21 \mathrm{~m} \\
& =0 . \frac{4.84}{4} \\
& \Rightarrow r
\end{aligned}
$$

$$
\begin{aligned}
& \therefore r m=r+\frac{t}{2} \\
& =1.46+\frac{0.3}{2} \\
& =1.46+0.15 \\
& \Rightarrow \gamma_{m}=1.61 \mathrm{~m} \\
& l=\frac{.8 b-2 a}{3} \\
& =\frac{8 \times 1.21-2 \times 1.1}{3} \\
& \Rightarrow l=2.49 \\
& l m=\lambda \times \frac{\gamma_{m}}{\gamma} \\
& =2.49 \times \frac{1.61}{1.46} \\
& \Rightarrow l m=2.75 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\text { Quantity } & =\operatorname{lm} \times b \times t \\
& =2.75 \times 0.3 \times 0.3 \\
& =0.247 \mathrm{~m}^{3}
\end{aligned}
$$

2) Two room building ? (Center line method)

$$
s=1.0 \mathrm{~m} \times 1.5 \mathrm{~m}
$$

All walls are of same section lintels over door, window, shelves are 15 cm thick RB.

Ic length of long wall $=10.6 \mathrm{~m}$
Long walls $=2 \times 10.6=21.2 \mathrm{~m}$
CIC Length of short wall $=6.3 \mathrm{~m}$
short wall $=3 \times 6.3=18.9 \mathrm{~m}$
\therefore Total centre length of the wall $=21.2 m+18.9 m=40.10 \mathrm{~m}$
Net centre line length $=40.10-(2 \times 0.5 \times 0.3)$
$=39.8 \mathrm{~m}$. [As there are two T-junction]

3) Single room Quaker:-

PLAN

Section $A B$

$$
\begin{aligned}
& \text { Long wall choc length }=5.3 \mathrm{~m} \\
& \text { Short wall } c \text { to c length }=4.0 \mathrm{~m}, \\
& \text { section on }
\end{aligned}
$$

$$
\omega=1 \times 1.2 \mathrm{~m}
$$

$$
\theta=1 \times 2.1 \mathrm{~m}
$$

Kitchen and Naranda

$$
Q_{1}=0.9 \times 2.1 \mathrm{~m}
$$

Long wall choc length $=5.4 \mathrm{~m}$ short wall ceto c length $=2.75 \mathrm{~m}$

4)

$$
\left[\begin{array}{l}
D=1.2 \times 2.1 \\
w_{1}=1 \times 1.5 \\
w_{2}=1.2 \times 1.5 \\
w_{3}=2 \times 1.5
\end{array}\right]
$$

$$
\begin{aligned}
& r_{m}=r+\frac{t}{2}=2.5+\frac{0.2}{2}=2.5+0.1=2.6 \\
& L_{m}=\pi * r m=\frac{22}{7} \times 2.6=8.17 \mathrm{~m}
\end{aligned}
$$

Total centre line length $=(4.2 \times 3)+(5.7 \times 2)+5.2+8.17+$

$$
\begin{aligned}
& =12.6+11.4+5.2+8.17+0.2 \\
& =37.57 \mathrm{~m}
\end{aligned}
$$

So ne

$$
\begin{aligned}
\text { net centre line length } & =37.57-(2 \times 0.5 \times 0.2) \\
& =37.57-0.2 \\
& \left.=37.37 \text { [As two } \begin{array}{rl}
& T \text { ' junctions }]
\end{array}\right]
\end{aligned}
$$

Doors:-

$$
\begin{aligned}
& Q_{1}=120 \mathrm{~m} \times 210 \mathrm{~cm}(1.20 \mathrm{~m} \times 2.10 \mathrm{~m}) \\
& D_{2}=100 \mathrm{~cm} \times 200 \mathrm{~cm}(1.0 \mathrm{~m} \times 2.0 \mathrm{~m}) \\
& \Phi_{3}=75 \mathrm{~cm} \times 180 \mathrm{~cm}(7.5 \mathrm{~m} \times 1.80 \mathrm{~m})
\end{aligned}
$$

Windows -

$$
\begin{aligned}
& \dot{w}_{1}=100 \mathrm{~cm} \times 150 \mathrm{~cm}(1.00 \mathrm{~m} \times 1.50 \mathrm{~m}) \\
& w_{2}=200 \mathrm{~cm} \times 150 \mathrm{~cm}(2.0 \mathrm{~m} \times 1.50 \mathrm{~m}) \\
& w_{3}=75 \mathrm{~cm} \times 120 \mathrm{~cm}(0.705 \mathrm{~m} \times 1.20 \mathrm{~m}) \\
& c \cdot \omega=75 \mathrm{~cm} \times 80 \mathrm{~cm}(0.7 .5 \mathrm{~m} \times 0.60 \mathrm{~m})
\end{aligned}
$$

shelves +
$S=100 \mathrm{~cm} \times 150 \mathrm{~cm}(1.0 \mathrm{~m} \times 1.5 \mathrm{~m})$
Lintel over Doors, windows etc
$15 \mathrm{~cm} R B$
The given building plan let us devided into four parts -
a) Drawing room and left hand side room
b) Two bed room, in right hand side mo
c) Front verandah
d) Back verandah

Measurement.
a) Total cit line length of drawing room a left side roomhong wall $=0.15+6.0+0.3+4.0+0.15=10.6 \mathrm{~m}$, short f watt $=5.3 \mathrm{~m}$
b) Total centreto centre line length of two right side bed room. Long wall $=0.15+5+4.0+0.3+0.15=9.6 \mathrm{~m}$, short watt $=4.8 \mathrm{~m}$.
c) Total cto C line length of front verandah $-L \omega=9.65 \mathrm{~m}, ~ s \omega=2225$
d) Total ctoc u u it back $"-L w=9.6 \mathrm{~m}, \mathrm{sai}=2.75 \mathrm{~m}$

The given plan is devided into two parts
t) Rooms
2) Verandah

1) Room

Total c to c length of long wall $=0.15+3.5+0.3+4+0.15=8.1 \mathrm{~m}$
Total cato c length of short wall $=0.15+4+0.15=4.3 \mathrm{~m}$
2) Verandah

Total cto C length of long wall $=8.1+0.5+0.5=8.2 \mathrm{~m}$
Total co length of short wall $=2.5+0.15+0.1=2.75 \mathrm{~m}$

$$
\begin{aligned}
\text { Add 3\% for contingencies } & =\frac{45041.175}{100} \times 3 \\
& =450.41 \times 3 \\
& =1351.23
\end{aligned}
$$

Add 201.50 or work charged establishment $=\frac{45041.175}{100} \times 2$

$$
\begin{aligned}
& =450.41 \times 2 \\
& =900.82
\end{aligned}
$$

$$
\text { Grand total }=45041 \cdot 175+1351.23+900.82=47293 \cdot 225
$$

head and lift:-
Normally earth work is estimated for 50 m lead for distance 1.5 m lift for height or depth and this distance of. 50 mm and height of 1.5 m are known as normal lead and lift. The load and lift will be different for every unit of 50 mm lead and for evens unit of 1.5 m lift.
head:-
It is the distance from the material transport to the build up area.
Lift:-
If is the distance from pt to construction.

Royalty	Materials
Cement	Manufactured
Sand	Natural
slip	Natural
Bricks	Manufactured
Metal	Natural
Rod	Manufactured
Lime	Manufactured
Wood	Natural

E.g:- If $1 \mathrm{~m}^{3}$ sand rateis 200 than E. 40 . is royalty charged rayculty is a free collected by government on natural resources.
The rate of particular items of wonk depends upon the following:i) specification of work and-matorials, equality of materials propertion of mortar method of constructional operation etc.
ii) Quantity of materials and their rates, no-of different types of labour and their rates.
iii) Location of site of worn and it's distances from the sour aces of materials and the rate of transport availability of water.
iiv-Prifit and miscellaneous and over head -expenses of contractor.

Over load corks:-
It included general office expenses rent, trance, superision and other cords which are indirect expencess and nod. productive expencess on the job.

The miscellanears-expencess-m al be under the following load site-
A) General overheads:-
i) Establishment coffice staff)
ii) Stationary, printing, postages etc.
ni) 'Travelling expencess
iv) Rent and taxes

1) Job overhead:-
i) Superversion (salary of -Engineers, overseers, supervergion etc)
2) Handling of materials.
iii) Repaing, carrialge and development of T a, $P 80$.
v) Ammeriats of labour.
v) Workman operation insurances etc.
vi) Ante Intrest on investment
vii) Losses on advances.

Top:-
For big work or project a $\%$ are of 1% to $11 / 2 \%$ of the estimated cost is provided in the estimate for the $\%$ of Tap which will be required for the execution of the wort.

Centage or charges or developmental charges -
With the Engineering department takes of the work of other department a $\%$ are of 10% to 15% of the estimated Cast is charged to most the expences of percentage chang. is known as centage charges.
Electrification similarly and water supply work:-
\Rightarrow For sanitary and water supply wo ok $\rightarrow 8 \%$ of the estimate bust building
\rightarrow For electrification $\rightarrow 8 \%$ of the estimate cost building
\Rightarrow For edification \rightarrow.
\Rightarrow To the attention of his $A E$ in charge for any irregularity of contract, specification of storage departmental materials or any other difficulties misbehaviour for efficient execution fiscally completion of the work.
\Rightarrow Outline the duties and responsibility for maintanence of stock and store when you are assigned with the charged. The JE entiveccy responsible for all stock and store in his charge. He is to mainitan the accurate of stone and boas plant correctly apo date.

He has to submit all returns of stick anat stored to the authorised. He looks after the materials and asticses are properties stocked and stored in such a way that time is no possibility of any damage or loss. He is maintain the proper and equal securities of the store and stock. There should be varification according to the rate of regular interval and take neccesary action and all storage and supply of the stored detected as a result of check. Any twist or detected should be reported to the AE or EE for quidance-and to-police atie. He is to encore that theveis no dangeriocs in the floor and there is no leakage in the roof of the store or godown.
Duties and responsibility of assistant Engineer:-
Each division-is derided into numbers of -sub division -1, each under charges of $S D O$ or $A E$. $A E$ is are directly incharges work facing under their charges and have to-executesupervision the manager, the work and have to maintan the quality and progress of work. There may be move $A E$ in a subdivision, if the work is heaver. who are directly responsible to the execution engineer with respect to the wow The SDO has the power of dishousement (payment) and has to maintan mitial accurate and has to submit accurate monthly to the DO. The work load of SDO or AE is 10 te 15 lakh. Before preparing a bill the JE must satisfy limeself);
that the work has accurately been execute in accordances with the detailed measurement recorded and persionally inspans all works of any magnitude before recomending final payment. The. AE take measurement of the all important corks and we must satisfy himself about the correctness of all the measurement recorded.

Duty and responsibility-of a Jonior Engineer in respect of quality control:-
\Rightarrow To surprise day to-day progress of work under his control, to cheek cup weather the materials, propertion of mix details of items workmainship etc... are provided as per specification and-drawishing for the work. The first -shape of the responsibility for $2 u a b i t y$ of works, lies on time.
\Rightarrow to take detailed measurement of work diving progress and enter the same in the measurement book and preparation of formally bills for payments.
\Rightarrow To maintain accounts to materials, tools and plant is sud for the work and to make timely recovery of the same from the bills for payment of the contractor. To maintain account of labour for coorkdone through muster roll.

Contingencies:-

- If - indicates incidental expences of miscellance. character whin canal be classified under any direct hem seb-head.

A certain are in the form of contigencess of $3 \%-5 \%$ of estimated cost is provided for contigencies.
Workcharged Establishment:-

- It is the establishment of which is changed to work direct During the construction of a building a project, a certain no of work supervisors, chaudirass, mates, etc are required to be exployed and thar salaries are paid from the am of work charged establishment for this a percent of $1 / 12$ to 2% of the estimated cost and is included.

Sundries:-

It is the item of work which can't be measured but it is required in the work and site. A lumpsum amount is wept as proviso to meet sunday expenditure, such as during work period anything unhappen things held.
E.g \rightarrow Breaking of handle of any tools purchase of medicines for use of labour etc:
Department:-

1) Water resourcess \rightarrow Govt- organization
2) Minor inngation \rightarrow UPSC, SS SC
3). Public work department \rightarrow Hocesing boat org.
3) RusS \rightarrow PWD, gr dept, NLPPC $R \& D$
4) PHED (Public hearty Engineering Department) \rightarrow Public senator
arg.
5) Rural work \rightarrow Public sector arg.

7 Permanent work and inspector -Group - I \rightarrow Indian Oil
8) Inspector of work-Grocup-III \rightarrow TINDAL, IATA, ONGC
9) OPUIO \rightarrow OPTCL, NOLCO, SAIL
iv) Block JE \rightarrow HAL, ETC
11). Hindustan cons corp \rightarrow

ABSTRACT FORM

Total amount $=8139.48$
Add 5% of contingencies and worked charged

$$
\begin{aligned}
\text { establishment } & =\frac{8139.48}{100} \times 5
\end{aligned}=406.947 .
$$

Calculation of dry materials - For different stems of work.

1) Cement concrete:-
-Sum.tuitat quantity of determining the selantity of materials for 10 arm concrete is to deviled 15.2 by the sum of numerals of the proportion of the materials which gives the quantity of cement in cum.

Add 52% of handling and transportation charges (losses)

1) Ex:- Calculate the dry-materials-reguired for 10 cum cement curionete of ratio $1: 4: 8$.
800^{7}
For locum cement concrete take 15.2 cum drin volume
Now,

$$
\text { Quantity of cement }=\frac{15.2}{1+4+8}=\frac{15.2}{13}=1.17 \mathrm{cam}
$$

$$
1 \mathrm{bag} \text { cement }=50 \mathrm{~kg}-0.034 \mathrm{cum} .
$$

Number of bags of cement $=\frac{1.17}{0.034}=34.41=-35$ bags
Quantity of fine aggregate (sand) $=4 \times 1.17=4.68 \mathrm{c}$
Quantity of coarse aggregates $=8 \times 1.17=9.36 \mathrm{cum}$
2) Ex:- calculate the dry materials required for 10 cum cement concrete of ratio $1: 3: 6$.
Sunn

- For- 10 cum cement concrete take 15.2 cum dry volume

Now
2) Brick work-

Quantity of. cement $=\frac{15.2}{1+3+6}=\frac{15.2}{10}=1.52 \mathrm{ccm}$
1 bag cement $=50 \mathrm{~kg}=0.034 \mathrm{cum}$
No of bags of cement $=\frac{1.52}{0.034}=44.70=45$ bags
Quantity of tine aggregates $=3 \times 1.52=4.56 \mathrm{cum}$
Quantity of coarse aggregate $=6 \times 152=9.12 \mathrm{cum}$
$a-E . x=$ consider -a wall $1(1 / 27$ bricks thick 30 cm nominal thickness of 20 m length and height is 5 m .
$30, \frac{18}{3}$
Nominal volume $=20 \times 5 \times 0.3=30 \mathrm{cum}$
Here 1 cm mortar joint is there so actual thickness is 29 Hence actual volume $=20 \times 5 \times 0.29=29 \mathrm{cum}$
Number of standard bricks of $20 \mathrm{~cm} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}$ (nominal

$$
=\frac{29}{0.2 \times 0.1 \times 0.1}=14500 \text { Nos }
$$

Therefore number of brick required for per cum nominal)

$$
=\frac{14500}{30}=484 \mathrm{nos}
$$

Considering 5% of breakages cuastage etc, the numbers may be taken as 500 Nos of bricks.

For. 10 cam BW no of bricks/resuired $=500 \times 10=5000$ Nos

Minder:-
Muster requirement $=$ Total vol. of BW-Nel volume of
Di

$$
\begin{aligned}
\text { Mortar requirement } & =29-(0.19 \times 0.09 \times 0.09 \times 14.500) \\
& =29-22.35 \\
& =6.685 \mathrm{cam}
\end{aligned}
$$

Now for Prog yisling, for use of et bricks for for uniform joints, wastager, etc... 15% extra mortar may be regulated.
\therefore Volume of mortar will be $=1.15 \times 6.685=7.688 \mathrm{cem}$
For dry volume increase more 25%
\therefore Dry volume of mortar will be $=1.25 \times 7.688=9161 \mathrm{cur}$
For 10 cum of $B \omega$, dry volume of mortar $=9.61 \times(10 / 30)$

$$
=3.2 \mathrm{cum}
$$

* In practice for Bu in cement mortar we lake-zem 3 sem as dry volume mortar and for lime water / mortar, we take 3.5 as dry volume of mortar.
E.9:-1:3 so for 10 cum Bio what is the guanfity of cement and sand?
goon is 3 cum:
we know, for 10 cum Bow of dry material for mortar
Quantity of cement $=\frac{3}{1+3}=\frac{3}{4}=0.75 \mathrm{ccm}$
No of bags of cement $=\frac{0.75}{0.034}=22.19=23$ bags
Quantify of sand $3 \times 0.75=2.25 \mathrm{cum}$
BW with traditional bricks: $=29.9 \times 11.4^{\prime \prime} \times 7.6\left(9^{\prime \prime} \times 4.5^{\prime} \times\right.$
HS volume of alias same, therefore the same quantity of bricks and mortar will be used, as for standard bricks.

3) Plastering:-

Area x thickness gives the quantity of mortar for uniform thickness.

Add 30% of to fill the points and to make up un uniform sewriface, this will gives the wet volume of mortar.

To get the total ding volume of mortar, the wet volume is further increased by 25%.

Materials for 12 mm thick plastering in wall for 100 sin n. wet mortar for uniform layer $=0.012 \times 100=1.2 \mathrm{cum}$
Add $30 \%=1.3 \times 1.2 \Rightarrow 1.56$ cum
gnerease it by $25 \%=1.25 \times 1.56=1.95 \mathrm{cum}$
80 take 2 cum for dry volume of 12 mm thick plastering for $100 \mathrm{~s}_{2 \mathrm{~m}}$.

* Fo 10 mm thick plastering for 100 sem \rightarrow cum

12 mm thick plastering for mossy \rightarrow em

LABOUR REQUREMENT FOR DIFFERED ITEMS OF WORK
UP PD 2006 rates:-

1) Dst class BuY For 10 cum-

Add 15% of water change
Add 10% of contractor profile
2) 20 cm . thick plastering for 10052 m -

3) Cement concrete using 20 mm aggregates -

4) Cement concrete using 40 mm aggregates for 10 cum -

Labour	Nos	Rates
Mistri (Head mason)	0.5	150
Mason	1.5	125
Mazdoor	12	60
collie (boy or woman)	18	50
Bhisti (curing)	4	50
Sundries (TQP)	bumpsum	RS -401-
Add 1.5% of water charge		
Add 10% of contractor profit		

5) 12 mm thick plastering for 100 szm

Labour	No	Rated	
Mristri (Head Mason)	0.33	50	
Mason	10	125	
Mazdoor	15	60	
Bhistic (curia)	0.75	50	
Sundries CTRP)	Lumpsum	RS $\rightarrow 70 /$	
Add 1.5% of water charge			
Add 10% of contractor profit			

Question

1) Find the unit rate of 12 mm -thick cement plastering ($1: 6$) on new BW per sam as per UP PWO code assciming market rate.
Ans
Finding dry material reselired for 100 s 2 m .
Dry material for 12 mm thick plastering for 100 ssm is 2 cum

$$
\text { Quantify of cement }=\frac{2}{1+6}=0.286 \mathrm{cum}
$$

No of bags of cement $=\frac{0.286}{0.034}=9$ bags
Quantity of sand $=0.286 \times 6=1.716 \mathrm{cum}$

S1. No	Particulars	Quantity	Unit	Rate	cost
1	Material				
	cement	9	Bags	180	1620
	Sand	1.716	Cub	120	205.92
	Labour			Total $=1825.920$	
2	Mistri	0.33	Nos	150	49.50
	Mason	10	Nos	125	1250
	Mardoor	15	Nos	60	900

Dry material calculation:-
plocam cement concrete 1:5:10.
8069
For 10 cum cement concrete 15.2 cum volume

$$
\text { Quantify of cement }=\frac{15.2}{1+5+10}=\frac{15.2}{16}=0.95 \text { cum }
$$

One bag ament $=50 \mathrm{~kg}=0.034 \mathrm{cum}$
Number of bags of cement $=\frac{0.95}{0.034}=27.95=28$ bags
Quantity of pine aggregate $=5 \times 0.95=4.75 \mathrm{ckm}$
Quantity of coarse aggregate $=0.95 \times 10=9.5 \mathrm{cum}$
L NO

2) 12 cum cement concrete $1: 4: 8$

Sown
For 10 cums cement concrete 15.2 cum volume

$$
\text { Quantity of cement }=\frac{15.2}{1+4+8}=\frac{15 \cdot 2}{13}=1.17 \mathrm{cum}
$$

For 1 cum cement concrete, quantity of cement $=\frac{1.17}{10}=0.117$ cam
For 12 cum cement concrete, quantity of cement $=12 \times 0.117=1.404 \mathrm{ccur}$ 1 bag cement $=50 \mathrm{~kg}=0.034 \mathrm{cum}$
No of bags of cement $=\frac{1.404}{0.034}=41.29=42$ bags
Quantity of fine aggregate $=1.404 \times 4=5.616 \mathrm{ccm}$
Quantity of coarse aggregate $=1.404 \times 8=11.232 \mathrm{cum}$

$$
\begin{aligned}
1 \mathrm{~m}^{3} & =\text { Brick }(\mathrm{m} 3)+\operatorname{Hortar}\left(\mathrm{m}^{3}\right) \\
& =500 \times 0.19 \times 0.09 \times 0.09+\text { Harar } \\
& =0.7695 \mathrm{~m}^{3}+\text { Mratar }
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \text { Volume of mortar } & =1-0.7695 \\
& =0.2305 \mathrm{~m}^{3}
\end{aligned}
$$

1). Garth work in"excaration, 2) PCC, 3) Plastering, 4) Super stastuce
5) Brick work in foundation, 6) Brick work in super structure \Rightarrow RCC in slab or beam is) Colouring
Classification of works according to the nature:Classified in 2 types
7) Original work
2) Repair work
original work:-
The original work may be of following types a- New construction of building, bridge, road.
b-Addition and alteration, existing works will increase the value of the property. Addition of rooms, conversion of verandah into room, deviding of big room into zoo small rooms.
Repair works:-
The repair work may be of following types -
a- The repairs reqeuret to maintain the work in proper condition. b-Minor additions and alterations which will nat increase the value of property. Opening of doors, providing of sun ser.
c- special repair, monsoon damage repair etc.

Valuation:-
Valuation is the technique of estimating or determining the hairs, price all value of a property, such as abililding, a factory, other engineering structures, land etc.
Cost:- Cost is original cost of construction or purchase. Scratavalue:-
is the value of dismontiled material for a building, When the life is over at the end of it's utility period the dismentled materials are in still, bricks timber etc, with fetch a certain amount which is the surat value of the building.
Salvage value:-
If is the value at the end of the ability period with out being dismantled:
Market value:-
The market value of a property is the amount which can be obtained at any particular time from the open market if the property is put for shell.
Book value:-
Book valve is the ament shown in the amounts book after allowing necessary deficiation.
Obsolescence:-
The value of property of structure becomes less by it's becoming out of date in stye, in structure, in design, etc and this is termed as obsolescence.
Sinking fund:-
The fund which is gradually accumulated by wane if annual depasite for the replacement of the building af the
end of it's useful lite, is termed as sinking fund.
Deficiation:-

Deficiation is the gradual exhaustion of the usefulness of a property. It may be defined of the decrease or lass in the value of a property due to structural deterionation use life well and teas, decay and obsolescence.
Q) Calculate the standard weight in kg of a 18 mm diameter Bar having 2 m length.
Sal

Crossectional area of the bar $=\frac{\pi}{4} d ?$

$$
\begin{aligned}
& =\frac{\pi}{4} \times(0.016)^{2} \\
& =2.010 \times 10^{-4} \mathrm{mz}
\end{aligned}
$$

Volume of the bar $=A \times L$

$$
\begin{aligned}
& =2.010 \times 10^{-4} \times 2 \\
& =4.021 \times 10^{-4} \mathrm{m3}
\end{aligned}
$$

Unit weight of steed $=7850 \mathrm{~kg} / \mathrm{m} 3$
Weights of 2 m bar $=7850 \times 4.021 \times 10^{-4}$

$$
=3.156 \mathrm{~kg}
$$

\therefore The weight of 2 m bar is 3.156 kg .
Q) Eaveulate the standard weight not 20 mm diancetes bars drawing 3 m length
Se

$$
\begin{aligned}
\text { Crostedional area of bar } & =\frac{\pi}{4} \times(0.020)^{2} \\
& =3.141 \times 10^{-4} \mathrm{~m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { Volume of bar } & =A \times L \\
& =3.141 \times 10^{-4} \times 3 \\
& =9.423 \times 10^{-4} \mathrm{~m}^{3}
\end{aligned}
$$

Unit weight of steel $=7850 \mathrm{~kg} / \mathrm{m} 3$
Weight of 3 m bar $=7850 \times 9.423 \times 10^{-4}$

$$
(290 . \mathrm{N}) \quad=7.398 \mathrm{~kg}
$$

\therefore The weight of $3 n$ steel bar is 7.398 kg .

* standard unit weight of steel $=7850 \mathrm{~kg} \mathrm{~kg} / \mathrm{m}^{3}$
Q)

Calculate the dry material rescuired cement concrete for given trapism.

So ln
Length of work is 5 m
Area of trapism, $\frac{\text { Top area }+ \text { Bottom area }}{2}$
Area of rectangle ${ }_{n}^{\text {shape }}=1 \times 0.5=0.5 \mathrm{~m}{ }^{2}$

$$
\begin{aligned}
\text { Area of triangle shape } & =\frac{1}{2} \times b \times h \\
& =\frac{1}{2} \times 0.75 \times 0.5 \quad\left[\quad \frac{2.5-1}{2}=0.75\right] \\
& =0.187 \mathrm{~m}^{2}
\end{aligned}
$$

Area of two triangle shape $=0.187 \times 2=0.374 \mathrm{~m}^{2}$

$$
\text { Total area of trapism }=0.5+0.374=0.875
$$

Volume of trapism $=0.875 \times 5=4.375 \mathrm{~m}^{3}$

$$
-1 m^{3}=1.52
$$

any material required for $4.375 \mathrm{~m}^{3}=4.375 \times 1.5=6.65 \mathrm{~m}^{3}$
Quantity of cement $=\frac{6.65}{1+4+8}=\frac{6.65}{13}=0.511 \mathrm{~m}^{3}$
1 bag of cement $=0.034 \mathrm{cum}$.
No of bags of cement $=\frac{0.511}{0.034}=15.02=16$ bags
Quantity of sand $=4 \times 0.511=2.044 \mathrm{~m}^{3}$
Quantity of aggregate $=8 \times 0.511=4.088 \mathrm{~m}^{3}$

calculate the earth coorkin excavation.
SOu)
centre to centre length of wall $n=6.0-\frac{0.3}{2}-\frac{0.3}{2}=5.7 \mathrm{~m}$,
Total ctoc of wall $=4 \times 5.7=22.8 \mathrm{~m}$

imerto inner
a) In a room size $5.0 \mathrm{~m} \times 3.0 \mathrm{~m}$, war thick 30 cm . Calculate the length of long wall, short wall a centre to centre length. 80,19

centre to centre length $=2 \times\left(5+\frac{0.3}{2}+\frac{0.3}{2}\right)+2 \times\left(3+\frac{0.3}{2}+\frac{0.3}{2}\right)$

$$
=2 \times(5.3)+2 \times(3.3)
$$

$$
=10.6+6.6
$$

$$
=17.2 \mathrm{~m}
$$

J

(H4:) onto

A

Assume

$$
\begin{aligned}
& \omega=1200 \times 2100 \mathrm{~mm} \\
& \omega=1000 \times 1200 \mathrm{~mm}
\end{aligned}
$$

Weloftiof chajja $=4.50 \mathrm{~mm}$
Cal curate the following items of work
i) EL in excavation in Foundation
v) Cement concrete in Foundation ($1: 2!4$)
iii) BC O in foundation \& plinth
iv) BW in super structure
v) Inside Plastering ($1: 4$) 12 mm thick.
$5 x-2$

Verandah

$$
\begin{aligned}
& \frac{0.2}{5+4.5+0.3+4.0}+\frac{0.2}{2}= \\
& =0.1+4.5+0.3+4.2+0.1=9 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
L \omega & =9.4-\frac{0.2}{2}-\frac{0.2}{2}=9.2 \mathrm{~m} \\
s w & =\frac{0.3}{2}+1.6+\frac{102}{2}= \\
& =0.15+1.6+0.1=1.85 \mathrm{~m}
\end{aligned}
$$

30 um

$$
\begin{aligned}
& L-\omega=(9.1 \times 2)=18.2 \\
& \delta \omega=(3.9 \times 3)=11.7
\end{aligned}
$$

$$
\begin{aligned}
\text { Total }=11.7+18.2=29.9 \mathrm{~m}^{2} & =299-\left(2 \times \frac{\partial 9}{2}\right)=289^{\circ}
\end{aligned}
$$

20 cm

$$
\begin{aligned}
& \text { Total }=9.2+(1.85 \times 2)= \\
&=9.2+3.7=12.9 m=12.9-2 \times \frac{0.9}{2} \\
&=12.0
\end{aligned}
$$

using mortar (1:6).
8010

For 10 cum gus, the dry material of mortar is 6 ckm

For 10 cum BW dry. material of mortar is 3.2 cm
For 1 cum dry volume of mortar $=\frac{3.2}{10} .0 .32 \mathrm{~cm}$ For 15 ccm dy y polume of mortar $=15^{5} \times 0.32=4.8$ Quantity of

$$
\text { cement } \frac{48}{166}=\frac{4.8}{7}=0.68
$$

we know hor loans of BW . 5000 bries and 3.4 am
1 cum of brice nesaired $=00$ mortar.
 $1511: 1110 \quad 1 \%=15 \times 500=7500$ oNUS rescinded

$$
\begin{aligned}
& \text { For } 10 \mathrm{cam}
\end{aligned}
$$

For 10 cum Bu dry material mortar is 3 ccm
For 1 cam 11 ir 11 is 0.3 cm
For 15 " ", ", " $0.3115=45$
Quantity of cement $2 \frac{4.5}{7}=0.64$

$$
\begin{aligned}
& 1 \text { bag of cement }=0.034 \mathrm{cum} \\
& \text { No of bags of cement }=\frac{0.6 y}{0.034}=18.8=19 \text { bags }
\end{aligned}
$$

Quantity of sand: $6 \times 0.64=3.84 \mathrm{cum}$

Expt-3.
d) Detailed of a 2 room building using Ms excel software
i) Et in excavation
(a) Lime convele in foundation
iii) First class $B \omega$ in foundation a plinth
iv) 2.5 cm flick $D P C$
v) First class BW in super structure

Abstract of estimate:-

$$
\begin{aligned}
& \text { C er length of long wall }=6.60-0.1-0.1=6.40 \\
& \text { n to c length of short walt }=4.4-0.01-0.1=4.20
\end{aligned}
$$

$$
\begin{aligned}
\text { Centre to centre length } & =(2 \times 6.40)+(3 \times 4.20) \\
& =12.8+12.6
\end{aligned}
$$

$$
=25 \cdot 4
$$

amp

Page- 94 fig- 3.5 \& $3.6 \rightarrow$ BIN Data
B) Pag-135 fig - $3.14 \& 3.15 \rightarrow$ BN. Datfa

91) Page -110, fig - $5.2 \rightarrow$ M. Chakrabarter
7) Page- 121 , fig -5. $3 \rightarrow$ M. chakrabartee
a) Earth work, in excavation
b) PCC in Foundation.
c) BW in foundation \& plinth
d) OPC
e) BW in super structure
f) RCl in super structure
9) Bu in parapet
h) 12 mm thick plastering inside \& outside wall
$\frac{\text { sop }}{\text { Qu }} \mathrm{Ca}$
Calculate the quantity of ding material resecined for

1) 16 cum BW with cement mortar 1.6
ii) 8 cum cement concrete $1: 1.5!3$.
iii) In $75^{\circ} \mathrm{s} \mathrm{sm}$. plastering of 2 mm thick cement mortar
iv) 40 ssm plastering of 20 mm thick cement mortar (is)

QR OD ($1: 3$)
devised \& suapilementans elimat.

24: I For wear bow 2500 brice and B em monger required

1 cum Brick rezeulred $=1500$

16 cum brice respired $=16 \times 500=8000$
For 10 cum Bow dry material regeured Bum
"1 cum "1 is is 110.3 cm
For 16 cm " 1 " " $0.3 \times 16=4.8 \mathrm{~cm}$
Quantity of cement $=\frac{4.8}{7}=0.68$
1 bag cement* 0.034 cum
No of bags of cements $\frac{0.68}{0.034}=20$ bags
Quantity of sand $=6 \times 0.68=4.08 \mathrm{~cm}$
iv) 12 mm thick Plasturg
thick
12 mm , for 1 ssm deg mortar regeured. 0.02
"Fer 75 km " $\quad 4 \quad 75 \times 0.02=1.5 \mathrm{~cm}$
\& far brag
Quantity of cement. $\frac{1.5}{4}=0.37 \mathrm{am}$

$$
\text { No of bags of cement }=\frac{0.37}{0.034}=10.38=11 \mathrm{hey}
$$

$$
\text { Quantity of sand }=0.37 \times 3=1.11 \text { cam }
$$

Sample paper - 2019
NO_{2}
d)

For 10 cum cement concrete lave if is cum, For team cement concrete $\frac{15.2}{10}=1.52 \mathrm{ckm}$.

Quantity of cement $=\frac{1.52}{1+2+4}=\frac{1.52}{7}=0.217 \mathrm{cmm}$
No of bags of cement $=\frac{0.217}{0.034}=6.38 .7$ bags
Quantity of sand $=0.217 \times 2=0.434 \mathrm{cum}$
Quantity of coarse aggregate $=0.217 \times 4=0.868$ cum.

3^{KD} SENT/ COIL / 2020(W)NEW
That Estimation © Cost Evaluation -1
Answer any five Questions including Q No. IV 2
Think 3 \# for
Figures in the right hand margin indicates marks

1. Answer All questions

Define Depreciation and Obsolescence.
Write down the volume and weight of one bag of cement.
c. Write down the unit of following items.
(i) Earthwork in filling
(ii) lime concrete terracing
d.

Define floor area of a building.
What do you mean by lead and lift?
t. Calculate the standard weight of 20 mm diameter bar of 1 meter length.

What do you mean by sinking fund?
What do you mean by AR estimate?
Draw the details of measurement form used in estimate,
Classify the labours as per OPWD and also mention their rates.
Answer Any Six Questions
Write the duties of Junior Engineer.
Calculate the dry materials required for $500 \mathrm{~m}^{2}$ of cement plaster ($1: 6$) of 12 mm thickness.
c. Describe briefly about different types of values of a structure.

Calculate the cost of construction of $8 \mathrm{~m}^{3}$ of brickwork (1:4) using standard bricks of size $19 \mathrm{c} . \mathrm{m} \times 9 \mathrm{c} . \mathrm{m} \times 9 \mathrm{c} . \mathrm{m}$. Use latest OPWD nates
Differentiate between Plinth area estimate and cube rate estimate.
C. Calculate the quantity of woodwork in frames of 2 doors and 3 windows having following specifications
Size of door $=1.2 \mathrm{~m} \times 2 \mathrm{~m}$, size of window $=1 \times 1.5 \mathrm{~m}$
Size of chowkath $=10 \mathrm{c} . \mathrm{m} \times 8 \mathrm{c} . \mathrm{m}$.
g. What do you mean by analysis of rate? Write the purpose of analysis of mates.
(3) Prepare the quantity estimate for the following items from the given drawing in Fig-1.
(a)Earthwork in excavation in foundation
(b) $1^{\text {st }}$ class brickwork in foundation and plinth($1: 3$).

Prepare the quantity estimate for the following items from the given drawing in Fig-1.

(a)First class brickwork in superstructure (1:3)
(b) $2.5 \mathrm{c} . \mathrm{m}$ dee work ($1: 2: 4$)
(a) Calculate the dry materials required for the quantity of items calculated for Q 5 4(b).
(b) Analyse the rate of materials and labours as per OPWD for 0.4 (a). 5

Write the role of following persons.
(a)Divisional accountant
(b) Executive engineer

Describe briefly about different types of estimates.

