LESSON PLAN	
JHARSUGUDA ENGINEERING SCHOOL,JHARSUGUDA	
Name of the Faculty: JYOTI NAIK	Academic Year: 2019-20
	 Course No.- Th.4
Programe: Diploma	Branch: Electronics \& Telecommunication Engg.
Year/Sem: II / IV	Section: NA

SI. No.	Period	Time (min)	Unit	Topic to be Covered	Teaching Method
1.	1.	55	1	Introduction to Analog Electronics	Chalk \& Board
2.	2.	55	1	p-n junction Diode-working principle, current equation, its specification and uses.	Chalk \& Board
3.	3.	55	1	Breakdown of Diode- Avalanche and Zener, Construction , working and characteristics of Diode	Chalk \& Board
4.	4.	55	1	Classification \& Working of Rectifiers- Half wave \& Full Wave(CT \& Bridge type)	Chalk \& Board
5.	5.	55	1	Working of n-p-n \& p-n-p Transistor, Transistor connections- $\mathrm{CB}, \mathrm{CE} \& \mathrm{CC}$ and their i / o characteristics	Audio -Visual using Smart Class
6.	6.	55	1	Current Amplification factors of transistor- alpha, beta, gamma and relationship among them	Chalk \& Board
7.	7.	55	1	Concept of biasing, its types, h- parameter model of BJT, Load Line- AC \& DC and determination of Q-point	Chalk \& Board
8.	8.	55	1	Types of Coupling, Working \& use of RC coupled Amplifier	Chalk \& Board
9.	9.	55	1	Frequency response of RC coupled Amplifier and its curve	Chalk \& Board
10	10.	55	1	Revision of Unit-1	Chalk \& Board
11	11.	55	2	Introduction to Power Amplifiers	Chalk \& Board
12	12.	55	2	Classification of Power Amplifiers	Chalk \& Board
13	13.	55	2	Difference between Voltage \& Power amplifier	Chalk \& Board
14	14.	55	2	Working of Class-A and Class-AB Power amplifier	Chalk \& Board
15	15.	55	2	Working of Class-B and Class-C and Class-D Power amplifier and Class-D Power amplifier	Chalk \& Board
16	16.	55	2	Construction, working \& advantages of Push Pull(Class-B) Amplifiers	Chalk \& Board
17	17.	55	2	Revision of Unit-2	Chalk \& Board
18	18.	55	3	Introduction to Field Effect Transistor (FET)	Chalk \& Board
19	19.	55	3	Classification of Field Effect Transistor	Chalk \& Board
20	20.	55	3	Difference between JFET and BJT	Chalk \& Board
21	21.	55	3	JFET- construction, Working \& characteristics	Audio -Visual using Smart Class
22	22.	55	3	JFET as an Amplifier	Chalk \& Board
23	23.	55	3	Different Parameters of JFET and relationship among them	Chalk \& Board
24	24.	55	3	MOSFET- construction, Working \& characteristics(Drain\& Transfer)	Chalk \& Board
25	25.	55	3	CMOS and its Operation	Chalk \& Board

26	26.	55	3	Operation of VMOS and LDMOS	Chalk \& Board
27	27.	55	3	Revision of Unit-3	Chalk \& Board
28	28.	55	4	Concept of Feedback-classification as Positive and Negative Feedback with Block Diagram	Chalk \& Board
29	29.	55	4	Working of feedback network, advantages \& disadvantages of Negative and Positive Feedback	Chalk \& Board
30	30.	55	4	Types of Negative FB-Voltage shunt, Voltage Series, Current Series and Current Shunt	Chalk \& Board
31	31.	55	4	Characteristics of Negative FB- voltage gain, BW, I/p Impedance, o / p impedance, stability etc	Chalk \& Board
32	32.	55	4	Oscillator- Block diagram, Types, working and Barkhausen Criterion	Chalk \& Board
33	33.	55	4	RC oscillators- RC phase shift and crystal oscillators	Chalk \& Board
34	34.	55	4	LC oscillators- Colpitts, Hartley and Wein-Bridge Oscillators	Chalk \& Board
35	35.	55	4	Revision of Unit-4	Chalk \& Board
36	36.	55	5	Tuned amplifier- definition, classification	Chalk \& Board
37	37.	55	5	Working of Parallel Resonant circuit , resonance curve and Sharpness of Resonance	Chalk \& Board
38	38.	55	5	Working of Single Tuned Voltage amplifier	Chalk \& Board
39	39.	55	5	Working of Double Tuned Voltage amplifier and its limitations	Chalk \& Board
40	40.	55	5	Non linear circuits- Clippers and Clampers, types of Clippers and Clampers	Chalk \& Board
41	41.	55	5	Working and Application of Clippers and Clampers	Chalk \& Board
42	42.	55	5	Multivibrators- Astable ,Monostable and Bistable	Chalk \& Board
43	43.	55	5	Circuit diagram and working of multivibrators	Chalk \& Board
44	44.	55	5	Integrator- circuit diagram, working , frequency response, i/o characteristics and uses	Chalk \& Board
45	45.	55	5	Differentiator - circuit diagram, working, frequency response, i/o characteristics and uses	Chalk \& Board
46	46.	55	5	Revision of Unit-5	Chalk \& Board
47	47.	55	6	Introduction to Differential amplifier	Chalk \& Board
48	48.	55	6	Differential Amplifier- configuration, working and significance	Chalk \& Board
49	49.	55	6	Op-amp -Block Diagram, equivalent circuit, symbol	Chalk \& Board
50	50.	55	6	Integrated circuit - definition and types of IC's	Audio -Visual using Smart Class
51	51.	55	6	Pin identification , temperature and ordering information of IC	Chalk \& Board
52	52.	55	6	Definition of various Op- amp characteristics- i / p offset voltage, i / p offset current,	Chalk \& Board
53	53.	55	6	Definition of CMRR, Slew Rate, Large signal voltage gain	Chalk \& Board
54	54.	55	6	Inverting Op- amp- circuit diagram and working	Chalk \& Board
55	55.	55	6	Non- Inverting Op- amp- circuit diagram and working	Chalk \& Board
56	56.	55	6	Voltage series feedback amplifier- circuit diagram and operation	Chalk \& Board
57	57.	55	6	Derivation of closed loop voltage gain, i / p and o / p resistances, bandwidth, Total o/p offset voltage of voltage	Chalk \& Board

				series fb amplifier	
58	58.	55	6	Voltage shunt feedback amplifier- circuit diagram and operation	Chalk \& Board
59	59.	55	6	Derivation of closed loop voltage gain, i / p and o/p resistances, bandwidth, Total o / p offset voltage of voltage shunt fb amplifier	Chalk \& Board
60	60.	55	6	Revision of Unit-6	Chalk \& Board
61	61.	55	7	Summing and Averaging amplifier using inverting \& noninverting amplifiers	Chalk \& Board
62	62.	55	7	DC \& AC amplifiers using Op-amp	Chalk \& Board
63	63.	55	7	Integrator and Differentiator circuit using OP- amp	Chalk \& Board
64	64.	55	7	Active Filter, first order low pass Butterworth filter	Chalk \& Board
65	65.	55	7	Zero- crossing detector using Op-amp	Chalk \& Board
66	66.	55	7	Block diagram \& Operation of IC 555 timer and its application	Chalk \& Board
67	67.	55	7	Block diagram \& Operation of IC 565 PLL and its application	Chalk \& Board
68	68.	55	7	Working of current-to-voltage convertor using Op-Amp	Chalk \& Board
69	69.	55	7	Working of voltage-to-frequency convertor using Op-Amp	Chalk \& Board
70	70.	55	7	Working of frequency- voltage-to- convertor using Op-Amp	Chalk \& Board
71	71.	55	7	Operation of IC78XX , 79XX and LM317 with pin configuration	Chalk \& Board
72	72.	55	7	Block diagram and working of IC regulator- LM723 \& LM-	Chalk \& Board
73	73.	55	7	Revision of Unit-7	Chalk \& Board
74	74.	55		Revision of the Whole Syllabus	Chalk \& Board
75	75.	55		Revision of the Whole Syllabus	Chalk \& Board

