SUB-ENGINEERING CHEMISTRY

MCQ UNIT-1

Q1.	Charge of electron is	Q9.	Atoms of the different elements which have same
	(A) -9.1×10 ⁻³¹ c (B) -1.6×10 ⁻¹⁹ c		number of neutrons are called
	© +1.6×10 ⁻¹⁹ c		(A) isotopes (B) isodiapheres
			© isobars © isotones
Q2.	Mass of proton is	Q10.	Which of the followings are isobars ?
	(A) 9.1×10 ⁻³¹ kg (B) 1.67×10 ⁻²⁷ kg		(A) 18Ar ⁴⁰ & 20Ca ⁴⁰ (B) 32Ge ⁷⁶ & 33As ⁷⁷
	© 1.67×10 ⁺²⁷ kg		© ₁ H ² & ₁ H ²
Q3.	The maximum number of electrons that can be present in L shell is	Q11.	Which of the followings are isotones?
	(A) 2 (B) 8		(B) 32Ge ⁷⁶ & 33As ⁷⁷
	© 18 © 32		© ₁ H ² & ₁ H ²
Q4.	The number of electrons present in Cl ⁻ & K ⁺ is&-	Q12.	Which of the followings are isotopes ?
	respectively.		(A) 18Ar ⁴⁰ & 20Ca ⁴⁰ (B) 32Ge ⁷⁶ & 33As ⁷⁷
	A 18 & 19B 17 & 18		© ₁ H ² & ₁ H ²
	© 17 & 19		5 1 41
Q5.	Find the number of proton and neutron present in C ¹⁴	Q13.	No two electrons in an atom can have all the four quantum numbers alike is governed by
	A 6&8 B 6&6		Pauli's exclusion principle
	© 8&6 © 7&8		©Aufbau's principle
Q6.	The maximum number of electron present in a shell is	Q14.	The electrons are arranged in various orbitals in order of their energy is governed by
	$egin{array}{cccccccccccccccccccccccccccccccccccc$		Pauli's exclusion principle
	© 2n+1 © 2(2n+1)		Pauli s'exclusion principle
		0.15	© Aufbau's principle D Bohr's principle
Q7.	Atoms of the same elements which have same atomic number but different mass number are	Q15.	Arrange 2p,3s,1s,3d,4s,2s,3p in the increasing order of their energy
	called		(A)1s<2p<2s<3p<3s<3d<4s (B)1s<2s<2p<3s<3p<4s<3d
	(A) isobars (B) isotopes		©1s<2p<2s<3s<3p<3d<4s
	© isodiapheres © isotones		
Q8.	Atoms of the different elements which have same mass number but different atomic number are	Q16.	Which has maximum energy amongst the 3p,3d,4s,4p
	called		A 3dB 3p
	(A) isobars (B) isotopes		© 4s
	© isotones		

Q17.	Name the element whose electronic configuration is $1s^2 2s^2 2p^6 3s^2$	Q25.	The bond which is formed by mutual sharing of electrons between two electronegative atoms
	(A) Mg (B) Na		ionic bond
	© Ne D Al		© dative bond © Metallic bond
Q18.	Write the electronic configuration Cr	Q26.	Which amongst the followings are covalent compounds
	(A) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ⁵ (B) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁴ (C) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁵		ⓐ NaCl & MgCl₂ ® NH₃ & CH₄
	© 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁶		© NaCl & CH4
Q19.	Write the electronic configuration of Fe ³⁺	Q27.	Which one of the followings contain coordinate bond
	(A) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^6$		⊕ H₂O ® NaCl
	 8 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁰ 1s² 2s² 2p⁶ 3s² 3p⁶ 4s⁰ 3d⁵ 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d³ 		© H ₂ O ₂
Q20.	Write the electronic configuration of N ³⁻	Q28.	Write the shape of the H ₂ O molecule
	(A) $1s^2 2s^2 2p^3$ (B) $1s^2 2s^2 2p^6$		ⓐ V Shape [®] Tetrahedral
	© 1s ² 2s ² 2p ⁰		© linear © pyramidal
Q21.	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰ represents	Q29.	What is the bond angle in water molecule?
	(A) Cr (B) Cu		
	© Co		© 120 [®] © 107 [®]
Q22.	What is the valency of Oxygen?	Q30.	What is shape and bond angle of CH₄
	(A) 2 (B) 1		A Pyramedal,107® B tetrahedral,109.5®
	© 3		© linear,180® © trigonal,120®
Q23.	The bond which is formed by the transfer of electron from electropositive atom to electronegative atom is	Q31.	What is the shape and bond angle of NH₃
	called		⊕ linear,180® ⊕ trigonal,120®
	(A) ionic bond (B) ionic bond		© pyramidal,107® © tetrahedral,109.5®
	© dative bond		
Q24.	Which amongst the following are ionic compounds	Q32.	Write the structure of NH₄ ⁺
			⊕ Tetrahedral
	© NaCl & CH ₄		© trigonal

Q33.	Acids are those substances which yield H ⁺ ions in	Q41.	A substance which act as both as an acid as well as a
	aqueous solution and bases are those substances		base is called
	which provides OH in aqueous solution, according to		
			(A) amphoteric substance
	Ewis concept B Arrhenius concept		® conjugate acid -base pairs
	© Bronsted &Lowry concept		© buffer
024		042	© salt
Q34.	Which one amongst the followings are acid	Q42.	Which one from the following is an example of amphoteric substance
	♠ HCI ® NaOH		amphotene substance
			⊕ H ₂ O ® HCl
	© KCI D NH ₃		
		0.40	© NaOH © NH ₃
Q35.	An acid is a proton donor & a base is a proton	Q43.	An acid is pair of electrons acceptor and a base is a
	acceptor according to		pair of electrons donor proposed by
	A Lewis concept B Arrhenius concept		
			A Lux-flood concept B Arrhenius concept
	© Bronsted &Lowry concept D Lux-flood concept		© Bronsted &Lowry concept D Lewis concept
Q36.	A conjugate acid & base pairs is differed by a	Q44.	Choose the Lewis acids from the following
Q30 .		α	
	⊕		ⓐ Cu ²⁺ , CO₂ ® OH ⁻ , Cl ⁻
	© H ⁻		© HCI, HNO₃ ® NaCl, NH₄OH
Q37.	The conjugate acid and base of H ₂ O molecule is	Q45.	Choose the Lewis acids from the following
ασ7.	& respectively.	۷.5.	-
			ⓐ NaOH, NH₄OH ® Cu²+, CO₂
	⊕ H ⁺ & OH ⁻ ⊕ H ₃ O ⁺ & OH ⁻		© HCI, HNO ₃ © CI ⁻ , NH ₃
	© OH- & H₃O+		
Q38.	Write the conjugate base of HCO ₃ .	Q46.	Neutralisation reaction is
	(A) H ₂ CO ₃ (B) H ⁺		A between strong acid & weak base
	O 112003		between weak acid & strong base
	© CO ₃ ²		© between strong acid &strong base
			© between weak acid & weak base
Q39.	Write the conjugate acid of NH₃.	Q47.	What is the colour of phenolphthalein in basic
	(A) NH₄OH (B) H ⁺		medium?
	© N⊓4O⊓		(A) orange (B) colourless
	© NH ₂ -		
			© pink © red
Q40.	Choose the correct statement from the following	Q48.	Choose the correct statement from the following
	i.A strong acid has a weak conjugate base		i.A strong base has a weak conjugate acid
	ii.A weak acid has a strong conjugate base		ii.A weak base has a strong conjugate acid
	only (i) is correct		only (i) is correct
	only (ii) is correct		only (ii) is correct
	© both (i) & (ii) are incorrect		© both (i) & (ii) are incorrect
	both (i) & (ii) are correct		both (i) & (ii) are correct

Q49.	Which one is an example of	of double salt?	Q59.	Calculate the equival	ent mass of Al(OH)₃.
	A K ₂ SO ₄ .Al ₂ (SO ₄) ₃ .24H ₂ O	[®] NaHCO₃		A 78	® 38
	© Mg(OH)Cl	© K ₄ [Fe(CN) ₆]		© 26	© 36
Q50.	Which one of the following		Q60.	Calculate the equivale	
	♠ Zn(OH)Cl	® K ₂ SO ₄		A 53	® 52
	© NaHSO ₄	© CaOCl ₂		© 106	© 104
Q51.	Which one of the following		Q61.	What is the charge or	
	ⓐ Zn(OH)Cl	® K ₄ [Fe(CN) ₆]		A 1-	® 2-
	© K ₂ SO ₄	© CaOCl ₂		© 3-	© 0
Q52.	Which one of the following		Q62.	What is the valency of	of Ca in CaCO ₃ ?
	ⓐ CaOCl₂	® Zn(OH)Cl		A 3	® 1
	© K ₄ [Fe(CN) ₆]	D NaHSO ₄		© 2	© 0
Q5.	Which one of the following		Q63.	Number of replaceab	le H ⁺ ions present in an acid is
	O 5- ()	O		called	
	\bigcirc K ₄ [Fe(CN) ₆]	[®] NaHSO₄		(A) acidity	[®] basicity
	© Zn(OH)Cl	© CaOCl ₂		,	_
Q54.	Atomic mass of Cu is		Q64.	© valency	© atomicity ole OH ⁻ ions present in a base is
Q34.			Q04.	called	ne off forts present in a base is
	A 56	® 63			
	© 56	© 66		(A) acidity	[®] atomicity
				© basicity	© valency
Q55.	Atomic mass of Cl is		Q65.	What is the acidity of	FAI(OH)₃?
	A 35.5	® 40		A 3	® 1
	© 39	© 17		© 2	© 4
Q56.	Calculate the molecular ma	ass of Ca(OH)₂.	Q66.	What is the acidity of	FKOH?
	A 77	® 74		A 1	® 2
	© 70	© 38		©3	© 0
Q57.	What is the charge on pho	sphate radical?	Q67.	What is the basicity of	
	A 1-	® 2-		A 3	® 1
	© 3-	© 4-		© 2	© 4
Q58.	What is the basicity of CH ₃		Q68.	What is the basicity of	
	A 3	[®] 1		A 3	® 1
	© 2	© 4		© 2	© 4

Q69.	Number of moles of solution is called as	f solute present in one litre of	Q78.	Calculate the molarity of gram of NaOH in 1lit. of	of a solution, which contain 4.0 f its solution.
	(A) normality	® molarity		(A) 1M	® 0.1M
	© molality	(D) formality		© 0.05M	© 0.5M
Q70.	Number of gram eq one litre of solution	uivalent of solute present in is called as	Q79.	Calculate the molality of the solution	of 0.1M solution of KCl. The is 0.12 gm/ml.
	(A) normality	® molarity		A 8 m	® 8.08 m
	© molality	(D) formality		© 0.88 m	© 0.088 m
Q71.	Number of moles of solvent is called as	f solute present in one kg of	Q80.	Which one is incorrect?	
	A normality	® molarity		A pH= -log ₁₀ [H ⁺]	$^{\textcircled{B}}$ pOH= -log ₁₀ [OH $^{-}$]
		·		© [H ⁺] [OH ⁻]=10 ⁻¹⁴	© pH + pOH=10 ⁻¹⁴
Q72.	© molality What is the unit of r	formality molarity?	Q81.	For acidic substance	
	(A) mol/lit	® lit/mol		♠ pH>7	® pH=7
	© mol/kg	© kg/mol		© pH<7	© pH=8
Q73.	What is the unit of r		Q82.	For basic substance	Ο βιι-υ
	(A) mol/lit	[®] lit/mol		ⓐ pH>7	® pH=7
	© mol/kg	® kg/mol		© pH<7	© pH=6
Q74.		nt of Na ₂ CO ₃ present in 1 lit. of	Q83.	Calculate the pH of 0.00	01 N HCl.
	N/10 solution.			A 2	® 11
	(A) 53 gm	® 5.3 gm		©4	© 3
	© 106 gm	© 10.6 gm			
Q75.	M/10 solution.	nt of H ₂ SO ₄ present in 1 lit. of	Q84	Calculate the pH of 0.00	
	(A) 98 gm	® 49 gm		(A) 2	® 11
		<u> </u>		©4	© 3
Q76.	© 9.8 gm Calculate the equiva	© 4.9 gm alent weight of Al ₂ (SO ₄) ₃ .	Q85.	Calculate the pH of 0.00	01 M H ₂ SO ₄ .
	A 342	® 114		(A) 3	® 4
	© 170	© 57		© 2.69	© 11
Q77.	Calculate the norma	ality of a solution, which	Q86.	Calculate the pH of 0.00	
	contain 4.9 gram of	H ₂ SO ₄ in 1lit. of its solution.		(A) 3	® 4
	(A) 1N	® 0.1N		© 2.69	© 11
	© 0.05N	© 0.5N			

Q87.	The molarity of Na ₂ CO ₃ solution is 0.05 M. what is its normality?	Q96.	By the electrolysis of Molten NaCl
	(A) 0.1 (B) 0.025		Na ₂ is deposited at cathode & Cl ₂ at anode B H ₂ is deposited at cathode & Cl ₂ at anode
	© 0.01 © 0.25		© Cl ₂ is deposited at cathode & Na ₂ anode © Cl ₂ is deposited at cathode & H ₂ at anode
Q88.	How many grams of KOH are required to prepare	Q97.	Faraday's first law of electrolysis state that
	2 litre of its solution having pH 12?		⊕ W=z.c.t
	ⓐ 0.56 gm		© Awt/Bwt=Aeq.wt/Beq.wt © Awt/Bwt= Beq.wt / Aeq.wt
	© 56 gm © 112 gm		
Q89.	11.2 gm of caustic potash are present in 5 litre of solution. Find the pH of the solution.	Q98.	Faraday's second law of electrolysis state that
	♠ 12.602 ■ 11		⊕ W=z.c.t ⊕ W=z/c.t
	© 11.206 © 12		© $A_{wt}/B_{wt}=A_{Eq.wt}/B_{Eq.wt}$ © $A_{wt}/B_{wt}=B_{Eq.wt}/A_{Eq.wt}$
Q90.	Calculate the amount of Na ₂ CO ₃ contain in 1 L of	Q99.	1Faraday =c
	Decinormal solution.		(A) +1.6*10 ⁻¹⁹ (B) 965000
	ⓐ 53 g		© 96500
004	© 106 g © 10.6	0.100	
Q91.	Substance which conduct electricity in their fused state or in aqueous solution is called	Q100.	Define electrochemical equivalent.
	A electrolyte B metallic conductor		(A) gm.eqv mass/96500 (B) 96500/n
	© non electrolyte		© 96500/ gm.eqv mass
Q92.	Which one from the followings is a strong	Q101.	Unit of charge is
	electrolyte?		A ampere B coulomb
	® CH₃COOH		© ohm © volt
	© NaCl © H ₂ CO ₃		
Q93.	Which one from the followings is a non-electrolyte?	Q102.	Unit of current is
	,		A ampere B coulomb
			© ohm © volt
Q94.	© NaCl © H ₂ CO ₃ Decomposition of electrolytes in solution by the	Q103.	Choose the correct option
	passage of electric current is known as	1 2200.	(A) coulomb=ampere x second
	(A) analyte (B) electrolysis		® ampere=coulomb x second
	© electric effect © electrophoresis		©coulomb=ampere/second © ampere=second/coulomb
Q95.	By the electrolysis of aqs. NaCl	Q104.	Calculate the electrochemical equivalent of Zn. (atomic mass of Zn =65)
	Na ₂ is deposited at cathode & Cl ₂ at anode B H ₂ is deposited at cathode & Cl ₂ at anode		(acomic mass of 211 os) (A 0.0033
	© Cl ₂ is deposited at cathode & Na ₂		
	anode © Cl ₂ is deposited at cathode & H ₂ at anode		© 0.00033 © 0.33
	O SIZ IS deposited at cathode & TIZ at alloue		

Q105.	sulphate solutio	f copper deposited from copper n by a current of 0.25 ampere (atomic mass of Cu=63)	Q106.		ochemical equivalent of silver that 0.0000104 (atomic mass of Ag
	⊕ 0.4 gm	[®] 0.3 gm		A 0.00112	® 0.122
	© 0.2 gm	© 0.4 gm		© 0.00211	© 0.211

SUB-ENGINEERING CHEMISTRY

(A) roasting

© calcination

[®] leaching

(D) smelting

MCQ UNIT-2

(D) leaching

© froth floatation

Q1.	Write the chemical form	ula of rusted iron.	Q8.	Which one of the follow	wing is an ore of AI?
	A Fe₂O₃ B	Fe ₂ O ₃ .x H ₂ O		(A) haematite	® limestone
	© Fe ₃ O ₄	Fe₃O₄. x H₂O		© bauxite	© cuprite
Q2.	The process of covering i	ron with Zinc is called	Q9.	Which one of the follow	wing is an ore of iron?
	(A) galvanisation	® electroplating		(A) haematite	® limestone
	© electrodeposition	(D) electrorefining		© bauxite	© cuprite
Q3.	The minerals from which extracted conveniently o		Q10.	Which one of the follow	wing is an ore of copper?
	(A) flux	® slag		(A) haematite	[®] limestone
	©ore	(D) gangue		© bauxite	© cuprite
Q4.	The substance which con form light and easily fusil	nbines with gangue to	Q11.	The method which is e of sulphide ores is	mployed for the concentration
	(A) flux	® slag		(A) gravity separation	® magnetic separation
	© ore	© gangue		© froth floatation	© leaching
Q5.	The substance which con form light and easily fusil soluble in the molten me	ble material, which is not	Q12.	The method which is e of magnetic ores is	mployed for the concentration
	(A) flux	(B) slag		Gravity separation froth floatation	magnetic separation leaching
Q6.	© ore Which one amongst the	© gangue following is an acidic flux?	Q13.		mployed for the concentration
	(A) CaO	® CaSiO ₃		of heavier ores is	® magnetic separation
	© CaCO₃	⊚ SiO ₂		A gravity separation C froth floatation	leaching
Q7.	The process of heating the absence of air at a temper		Q14.		ion impurities from the ore by
	melting point is called			(A) gravity separation	® magnetic separation

Q15.	The process of heating the concentrated ore in	Q22.	Galena, copper pyrite is concentrated by
	controlled supply of oxygen is called		A gravity separation B magnetic separation
	(A) roasting (B) leaching		
	© calcination © smelting		© froth floatation © leaching
Q16.	The conversion of metal oxide to metal by adding	Q23.	Composition of bronze
	suitable quantity of coke, charcoal or reducing		(A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B
	agent with metal oxide at high temperature above its melting point is called		(A) Cu=60-80%, Zn=40-20% (B) Cu=75-90%, Sn=25-10%
	its metting point is called		© Al=95%, Cu=4%, Mn=0.5%, Mg=0.5%
	(A) roasting (B) leaching		© Fe=60%, Al=12%, Ni=20%, Co=8%
	© calcination © smelting		
Q17.	Copper is extracted from sulphide ore using the method	Q24.	Composition of alnico
			(A) Cu=60-80%, Zn=40-20%
	(A) carbon reduction		® Cu=75-90%, Sn=25-10%
	® auto reduction		© Al=95%, Cu=4%, Mn=0.5%, Mg=0.5%
	© carbon monoxide reduction © hydrogen reduction		© Fe=60%, Al=12%, Ni=20%, Co=8%
Q18.	In the electrolytic refining of copper Ag and Au are	Q25.	The alloy which contain mercury is called
	found		A ferro alloy B amalgams
	(A) on anode (B) in electrolyte solution		,
	,		© alnico D brass
010	© in anode mud © in cathode mud	026	The all the back of the second
Q19.	Which method metal refining is used to obtained metals of very high purity?	Q26.	The alloy which is used for making air ship
	metals of very high purity:		A brass B bronze
	a zone refining		
	© electrolytic refining		© alnico D duralumin
Q20.	Name the metal which is generally purified by	Q27.	Which one is an example of ferroalloy?
	cupellation		
	(A) gold (B) silver		(A) alnico (B) brass
	(A) gold (B) silver		© bronze © bell metal
	© copper		
Q21.	Composition of brass	Q28.	The alloy which is used for making permanent magnet
	(A) Cu=60-80%, Zn=40-20%		is
	® Cu=75-90%, Sn=25-10%		A brass B bronze
	© Al=95%, Cu=4%, Mn=0.5%, Mg=0.5%		
	© Fe=60%, Al=12%, Ni=20%, Co=8%		© alnico D duralumin

SUB-ENGINEERING CHEMISTRY

MCQ UNIT-3

Q1. Saturated organic compounds generally contain Find the number of C atom present in isobutane. Q9. AC-C triple bond **B**C-C single bond (A) 4 © 6 (D) 3 ©C-C double bond (P)no bond Q2. Unsaturated hydrocarbons generally contain Q10. Which one amongst the following is an aromatic compound? AC-C double bond/triple bond **B**only C-C single bond (A) benzene ® cyclohexene ©no bond ©C-C Quadruples bond © cyclopentadiene © cyclobutadiene General formula of alkane is Which one amongst the following is not a O3. 011. characteristic of aromatic compound? \bigcirc C_nH_{2n+1} (B) C_nH_{2n+2} A cyclic (B) planner © C_nH_{2n-2} \odot C_nH_{2n} © contain $(4n+2)\pi e^{-s}$ © each 'C' is sp³ hybridised General formula of alkene is Name the functional group present in alcohol. Q4. Q12. \triangle C_nH_{2n+1} (B) C_nH_{2n+2} (A)-CHO B-OH \bigcirc C_nH_{2n-2} \odot C_nH_{2n} ©-COOH (D)-C=O Q5. General formula of alkyne is Which one amongst the following is the structure of Q13. ethanol? $^{\tiny{\text{\tiny B}}} C_n H_{2n+2}$ \triangle C_nH_{2n+1} A CH₃-OH **В** НСООН D C_nH_{2n-2} © C_nH_{2n} © CH₃-COOH © CH₃-CH₂-OH Q6. What is the functional group of alkenes? Q14. Name this compound CH₃-C(Cl₂)-CH₂-CH₂- CH₂-OH. (A) C-C B C=C (A) 2-dichloro pentanol **B** 4,4-dichloro pentanol © CEC (D) -O-© 2,2-dichloro pentanol © 2,2-dichloro pentan-5-ol Q7. What is the functional group of alkynes? Q15. Which one amongst the following is not an aromatic compound? A C-C ® C=C (A) benzene ® naphthalene (D) -O-© C≡C © cyclobutadiene © anthracene Find the number of π -electrons present in benzene. Q8. Name this compound CH≡C-CH₂-CH=CH₂ Q16. ^(B) 6 π-electrons A pent-1-en-4-yne B pent-1-yn-4-ene A 4 π-electrons © penta-1,4-diene © penta-1,4-diyne © 3 π-electrons [®] 2 π-electrons

Q17	Correct IUPAC name for this given compound is	Q21.	The number of π -electrons in this given compound
	$CH_3 - CH_2 - CH - CH_2 - CH_3$		ls
	OH		
	(A) pentanol		A 7 π-electrons
	B pentan-3-ol		B 14 π-electrons
	© 3-hydroxy pentane		© 22 π-electrons
	© iso-pentanol		D 16 π-electrons
Q18.	Correct IUPAC name for this given compound is	Q22.	Correct IUPAC name for this given compound is
	CH_3		$CH_3 - C \equiv C - CH - CH_3$
			· · · · · · · · · · · · · · · · · · ·
	$CH_3 - C - CH_2OH$		CH_3
	CH ₃		
			4-methyl pent-2-yne
	2,2-dimethyl propan-1-ol		2-methyl pent-3-yne
	B 2,2-dimethyl propan-3-ol		© 4-methyl pent-2-ene
	© pentanol		© 2-methyl pent-3-ene
	1-hydroxy neopentane		, ,
Q19	Name this given compound. OH	Q23.	which statement about this given structure is
			incorrect?
	A Toluene		
	(A) Toluene (B) Phenol		it is aromatic compound
	© benzoic acid		planner
	benzene benzene		© Non aromatic compound
	3 25253		© contain 6 π-electrons
Q20	Name this given compound. CH ₃	Q24.	which statement about this given structure is
			incorrect?
	(A) Toluene		
	Phenol honzois said		(A) it is aromatic compound
	© benzoic acid D benzene		B planner© Non aromatic compound
	benzene .		© Non aromatic compound © contain 10 π-electrons
			Contain 10 /t-elections

SUB-ENGINEERING CHEMISTRY

MCQ UNIT-4

Q1.	Hardness of water is due to the presence of salts of	Q7.	The chemical equivalent of MgSO ₄ salt is
	(A) potassium (B) chlorine		
	© Magnesium		© 68 © 34
Q2.	Select the incorrect statement from the following option.	Q8.	Select the incorrect statement from the following option.
	AWater which does not form lather with soap and forms white scum is called hard water B Hard water contains dissolved calcium and magnesium salts in it C In hard water, cleansing quality of soap is depressed Due to the presence of dissolved hardness-producing salts, the boiling point of water is depressed		 A Permanent hardness is due to dissolved chlorides and sulphates of calcium and magnesium B It can be removed by mere boiling of water It is also known as non-alkaline hardness The difference between the total hardness and the alkaline hardness gives the non-alkaline hardness
Q3.	Which of the following is not a unit of hardness?	Q9.	Hardness of water is conventionally expressed in terms of equivalent amount of
	A parts per million		⊕ H₂CO₃
	degree centigrade degree clarke		© MgCO ₃
Q4.	Select the incorrect statement from the following option.	Q10.	Select the incorrect statement from the following option.
	Cold lime soda process is conducted at room temperature Btakes about 24 hrs. to complete hardness left in water is about 60 ppm no coagulant is needed		A cold lime soda process is conducted at high temperature (80-150°C) B takes about 15 minutes to complete hardness left in water is about 30 ppm coagulant is needed
Q5.	Which one of the following reactions shows the softening of water by lime soda process?	Q11.	Which one of the following reactions shows the permanent softening of water by soda process?
	© Ca(HCO ₃) ₂ $\stackrel{\triangle}{\longrightarrow}$ 2CaCO ₃ +2H ₂ O+CO ₂ © Ca(resin) ₂ + HCl $\stackrel{\longrightarrow}{\longrightarrow}$ CaCl ₂ + 2H ⁺ -resin		© $Ca(HCO_3)_2$ $\xrightarrow{\Delta}$ $2CaCO_3+2H_2O+CO_2$ © $Ca(resin)_2 + HCI \longrightarrow CaCl_2 + 2H^+-resin$
Q6.	Formula of lime water is	Q12.	Which of the following is an example of solid lubricants?
	\bigcirc Na ₂ CO ₃ .10H ₂ O \bigcirc Ca(OH) ₂		A petroleum B graphite
	© CaCO ₃ © Ca(HCO ₃) ₂		© wax

Q13.	Select the incorrect statement from the following option.	Q20.	Composition of LPG is
	A Lubricants reduces friction B Lubricants minimise energy C Lubricants increases the expansion of metal D Lubricants act as coolant by removing the heat of friction		 A H₂=8-12%, N₂=52-55%, CO=22-30%, CO₂=3% B H₂=51%, N₂=4%, CO=41%, CO₂=4% CH₄=70-90%, C₂H₆=4-9% n-butane=27%, isobutane=25%, butene=43%, propane=2.5%, propene=2.5%
Q14.	The amount of heat released by the complete combustion of one gram of food/fuel is called	Q21.	A polymer which is formed from two or more different monomers through covalent bond is
	Specific heat		 A copolymer B homomer C degree of polymerisation D condensed polymer
Q15.	Composition of petrol is (A) C=84%, H=16%, S=≤1% (B) C=84%, H=15%, N+S+O=10% (C) C=85%, H=12%, Others=3% (D) C=80%, H=15%, O=5%	Q22.	Combination through different functional groups of monomers with elimination of small molecule like water is termed as addition polymerization copolymerization degree of polymerization
Q16.	Composition of diesel is (A) C=84%, H=16%, S=≤1% (B) C=84%, H=15%, N+S+O=10% (C) C=85%, H=12%, Others=3% (D) C=80%, H=15%, O=5%	Q23.	The number of repeating units present in a polymer is called (A) addition polymerization (B) condensation polymerization (C) copolymerization (D) degree of polymerization
Q17.	Composition of kerosene is (A) C=84%, H=16%, S=≤1% (B) C=84%, H=15%, N+S+O=10% (C) C=85%, H=12%, Others=3% (D) C=80%, H=15%, O=5%	Q24.	Natural rubber is a polymer of (A) butadiene (B) ethene (C) isoprene (D) vinyl chloride
Q18.	Composition of Water gas is (A) H ₂ =8-12%, N ₂ =52-55%, CO=22-30%, CO ₂ =3% (B) H ₂ =51%, N ₂ =4%, CO=41%, CO ₂ =4% (C) C=84%, H=15%, N+S+O=10% (D) C=80%, H=15%, O=5%	Q25.	The vulcanized rubber has (a) High water absorption, resistant to oxidation and good elasticity (b) High water absorption, susceptible to oxidation and no elasticity (c) High water absorption, susceptible to oxidation and good elasticity (d) Low water absorption, resistance to oxidation and good elasticity.
Q19.	Composition of Producer gas is (A) H ₂ =8-12%, N ₂ =52-55%, CO=22-30%, CO ₂ =3% (B) H ₂ =51%, N ₂ =4%, CO=41%, CO ₂ =4% (C) C=84%, H=15%, N+S+O=10% (D) C=80%, H=15%, O=5%	Q26.	Chose the correct option Apolythene, PVC, Teflon are example of thermoplastic polymer. Bakelite, terylene are example of thermoplastic polymer. Cthermosetting polymer can be remolded, reshaped thermosetting are usually linearstructure

Q27.	Monomer of polythene is	Q29.	Monomer of poly vinyl chloride is
	 A vinyl chloride B ethylene © phenol & formaldehyde D phenol 		 A vinyl chloride B ethylene © phenol & formaldehyde D phenol
Q28.	Monomer of bakelite is	Q30.	Monomer of polythene is
	 A vinyl chloride B ethylene © phenol & formaldehyde D phenol 		 A vinyl chloride B ethylene © phenol & formaldehyde D phenol
Q31.	the chemical substances used to kill or prevent growth of insects is called A Insecticides	Q32.	The biocidal chemical compounds or biological organisms used to kill parasitic fungi or their spores. is called
	Fungicides Herbicides Bactericides		 A Insecticides B Fungicides C Herbicides D Bactericides
Q33.	the chemical substances used to destroy unwanted vegetation (like weeds) is called A Insecticides B Fungicides	Q34.	Which of the following is a bacterial biofertilizer? (A) Gammaxene (B) Copper oxychloride (C) carbamate
	 Fungicioes Herbicides Bactericides		© Rhizobium
Q35.	Which of the following is an algal biofertilizer?	Q36.	Which of the following is a insecticides?
	 A Gammaxene B Copper oxychloride © blue green algae D Rhizobium 		 A Gammaxene B Copper oxychloride C carbamate Rhizobium