LECTURE NOTES

ON

MICROPROCESSOR & MICROCONTROLLER

DIPLOMA

Subject code-TH3

4™ SEMESTER , E&TC ENGINEERING

b/ 6=\
AT
P < 5
o% %"é
% &
g 50

PREPARED BY

YASOBANTI NAYAK (Lecturer in E&TC)
DEPT. OF ELECTRONICS & TELECOMMUNICATION ENGINEERING

JHARSUGUDA ENGINEERING SCHOOL, JHARSUGUDA

Unit-1:

Unit-2:

Unit-3:

Unit-4

Unit-5

Unit-6

Microprocessor (Architecture and Programming-8085-8-bit)

Introduction to Microprocessor and Microcomputer & distinguish between them.
Concept of Address bus, Data bus, Control bus & System Bus

General Bus structure Block diagram.

Basic Architecture of 8085 (8 bit) Microprocessor

Signal Description (Pin diagram) of 8085 Microprocessor

Register Organizations,Distinguish between SPR & GPR, Timing & Control Module,
Stack, Stack pointer &Stack top.

o b od b eh b b
NOO &EWN -

1.8 Interrupts:-8085 Interrupts, Masking of Interrupt(SIM,RIM)

Instruction Set and Assembly Language Programming
21 Addressing data & Differentiate between one-byte, two-byte &three-byte instructions with
examples.
22 Addressing modes in instructions with suitable examples.
23 Instruction Set of 8085(Data Transfer, Arithmetic, Logical, Branching, Stack& I/O , Machine
Control)
24 Simple Assembly Language Programming of 8085
241 Simple Addition & Subtraction
2.4.2 Logic Operations (AND, OR, Complement 1's & 2's) & Masking of bits
243 Counters & Time delay (Single Register, Register Pair, More than Two Register)
244 Looping, Counting & Indexing (Call/JMP etc).
245 Stack & Subroutine programes.
246 Code conversion, BCD Arithmetic & 16 Bit data Operation, Block Transfer.
247 Compare between two numbers
248 Array Handling (Largest number & smallest number in the array)
2.5 Memory & I/O Addressing,

TIMING DIAGRAMS.

3.1 Define opcode, operand, T-State, Fetch cycle, Machine Cycle, Instruction cycle & discuss the
concept of timing diagram.

3.2 Draw timing diagram for memory read, memory write, 1/O read, /O write machine cycle.

33 Draw a neat sketch for the timing diagram for 8085 instruction (MOV, MVI, LDA instruction).

Microprocessor Based System Development Aids

4.1 Concept of interfacing

4.2 Define Mapping &Data transfer mechanisms - Memory mapping & I/O Mapping
4.3 Concept of Memory Interfacing:- Interfacing EPROM & RAM Memories
4.4 Concept of Address decoding for I/O devices

4.5 Programmable Peripheral Interface: 8255

4.6 ADC & DAC with Interfacing.

4.7 Interfacing Seven Segment Displays

4.8 Generate square waves on all lines of 8255

4.9 Design Interface a traffic light control system using 8255.

4.10 Design interface for stepper motor control using 8255.

4.11 Basic concept of other Interfacing DMA controller, USART

Microprocessor (Architecture and Programming-8086-16 bit)

5.1 Register Organisation of 8086

5.2 Internal architecture of 8086

5.3 Signal Descriptionof 8086

5.4 General Bus Operation& Physical Memory Organisation

5.5 MinimumMode&Timings,

5.6 Maximum Mode&Timings,

5.7 Interrupts and Interrupt Service Routines, Interrupt Cycle, Non-Maskable Interrupt, Maskable
Interrupt

5.8 8086 Instruction Set & Programming: Addressing Modes, Instruction Set, Assembler Directives
and Operators,

5.9 Simple Assembly language programmingusing 8086 instructions.

Microcontroller (Architecture and Programming-8 bit):-
6.1 Distinguish between Microprocessor & Microcontroller
o Bepiiniblonlpibest tos

6.3 CISC & RISC processor
6.4 Architectureof8051Microcontroller

1.1 Introduction to Microcomputer AND Microprocessor &
distinguish between them.

Microcomputer

A microcomputer can be defined as a small sized, inexpensive, and limited
capability computer. It has the same architectural block structure that is
present on a computer. Present-day microcomputers are having smaller
sizes. Nowadays, they are of the size of a notebook. But in the coming days
also their sizes will get more reduced as well. Due to their lower costs,
individuals can possess them as their personal computers. Because of
mass production, they are becoming still cheaper. Initially, in the earlier
days, they were not very much powerful. Their internal operations and
instructions were very much limited and restricted. But at present days,
microcomputers have not only multiplied and divide instructions on
unsigned and signed numbers but are also capable of performing floating
point arithmetic operations. In fact, they are becoming more powerful than
the minicomputers and main computers of yesteryear.

As an example, the Commodore 64 was one of the most popular
microcomputers of its era and is the best-selling model of home computer of
all time.

So a microcomputer is a small, relatively inexpensive computer with a
microprocessor as its central processing unit (CPU). It includes a single
printed circuit board containing a microprocessor, memory, and minimal
input/output(l/O) circuitry mounted. With the advent of increasingly powerful
microprocessors, microcomputers became popular in the 1970s and1980s.
The predecessors to these computers, mainframes, and minicomputers, were
comparatively much larger and more expensive(though indeed present-day
mainframes such as the IBM System z machines use one or more custom
microprocessors as their CPUs). Also, we can mention that many
microcomputers, in the generic sense, (when equipped with a keyboard and
screen for input and output) are also personal computers.

Microprocessor

The processor on a single chip is called a Microprocessor which can
process micro-instructions. Instructions in the form of Osand 1s

are called micro-instructions. The microprocessor is the CPU part of a
microcomputer, and it is also available as a single integrated circuit.
Thus as main components, the microprocessor will have theControl
Unit (CU) and the Arithmetic Logic Unit (ALU) of a microcomputer. An
example is Intel 8085 microprocessor. In addition to the
microprocessor features, a microcomputer will have the following
additional features:

ROM/PROM/EPROM/EEPROM for storing program;

RAM for storing data, intermediate results, and final results;
I/O devices for communication with the outside world,;

I/O ports for communication with the I/O devices.

In the present-day world, Microprocessors are extensively used.
Before the microprocessor’s invention, the logic design was done by
hardware using gates, flip-flops, etc. A mini-computer was too much
costly. With the advent of the microprocessor, logic design using
hardware has been mostly replaced. It provides flexibility
instrumentation where the characteristics of the system can be
changed just by changing the software. Also, new generations of
applications have surfaced, which were not thought of earlier because
of the prohibitive cost of a minicomputer or the complexity of logic
design using hardware.

Some of the applications where microprocessors have been used
are listed below —

Business applications such as desktop publishing;
Industrial applications such as power plant control;

Measuring instruments such as multimeter;

- Household equipment such as washing machine;

- Medical equipment such as blood pressure monitor;

- Defense equipment such as light combat aircraft;

- Computers such as a personal computer.

Microprocessor

Read-Only
Memory (ROM)

Read-Write
Memory

Serial
Interface

Microprocessor
System Bus

1/0 Port

Micro Controller

Read-Only
Memory

Read-Write

Microcontroller
Memory

1/0 Port

Serial Interface

Microprocessor is heart of Computer system.

Micro Controller is a heart of embedded system.

It is just a processor. Memory and I/O components
have to be connected externally

Micro controller has external processor along with
internal memory and i/O components

Since memory and I/O has to be connected externally,
the circuit becomes large.

Since memory and 1/O are present internally, the
circuit is small.

Cannot be used in compact systems and hence
inefficient

Can be used in compact systems and hence it is an
efficient technique

Cost of the entire system increases

Cost of the entire system is low

Due to external components, the entire power
consumption is high. Hence it is not suitable to used
with devices running on stored power like batteries.

Since external components are low, total power
consumption is less and can be used with devices
running on stored power like batteries.

Most of the microprocessors do not have power saving
features.

Most of the micro controllers have power saving modes
like idle mode and power saving mode. This helps to
reduce power consumption even further.

Since memory and I/O components are all external,
each instruction will need external operation, hence it
is relatively slower.

Since components are internal, most of the operations
are internal instruction, hence speed is fast.

Microprocessor have less number of registers, hence
more operations are memory based.

Micro controller have more number of registers, hence
the programs are easier to write.

Microprocessors are based on von Neumann
model/architecture where program and data are stored
in same memory module

Micro controllers are based on Harvard architecture
where program memory and Data memory are separate

Mainly used in personal computers

Used mainly in washing machine, MP3 players

H2-ComeeptofAddressbus BatabusControtbus & SystermBus—

BIESTEM BUSES

= Set of wires, that interconnects all the components
(subsystems) of a computer

= A source component sources out data onto the bus

= A destination component inputs data from the bus

= May have a hierarchy of buses
= Address, data and control buses to access memory and an I/O controller.
= Second set of buses from I/O controller to attached devices/peripherals

= Peripheral Component Interconnect{PCl) bus is an example of a very
common local bus

..

Control bus

[1
Address bus

+
Data bus

...

System bus

Fig: System Bus (Data, Address and Control Bus)

ADDRESS BUS

= It is a channel which transmits addresses of data (not the data) from
the CPU to memory.

* The address bus consists of 16,24, or 32 parallel signal lines.

* The number of lines (wires) determines the amount of memory that

can be directly addressed as each line camries one bit of the address.

* If the CPU has N address lines, then it can directly address 2™ address

lines.

* For example, a computer with 32 bit address can address 4GB of
physical memory.

* CPU reads/writes data from the memory by addressing a
unique location; outputs the location of the data (aka
address) on the address bus; memory uses this address to
access the proper data.

* Each /O device (such as monitor, keypad, etc) has a
unique address as well (or arange of addresses); when
accessing a I/0 device, CPU places its address on the
address bus. Each device will detect if it 1s its own address
and act accordingly

* Devices always receive data from the CPU; CPU never
reads the address buss (it 1s never addressed)

DATA BUS

* Data bus is a channel across which actual data are transferred
between the CPU, memory and I/O devices.

* The data bus consists of 8, 16, 32 or 64 parallel signal lines.
Because each wire can transfer | bit of data at a time, an 8 wire
bus can move 8 bits at a time which is a full byte.

* The number of wires in the bus affects the speed at which data
can travel between hardware components. The wider the data
bus, more data it can carry at one time.

* The data bus is bidirectional this means that the CPU can read
data in from memory or it can send data out to memory.

* When the CPU fetches data from memory, it first outputs
the address on the address bus, then the memory outputs
the data onto the data bus; the CPU reads the data from
data bus

* When writing data onto the memory, the CPU outputs
first the address on the address bus, then outputs the data
onto the output bus; memory then reads and stores the
data at the proper location

* The process to read/write to a /O device is similar

CONTROL BUS

* The physical connections that carry control information between the
CPU and other devices within the computer. This bus is mostly a
collection of unidirectional signals.

* It is the path for all timing and controlling functions sent by the
control units to other units of the system.

* It carries signals that report the status of various devices.

* These signals indicate whether the data is to be read into or written out the CPU,
whether the CPU is accessing memory or an IO device, and whether the [/O device or
memory is ready for the data transfer

* For example, one line of the bus is used to indicate whether the CPU is
currently reading from or writing to main memory. Others are /O
Read/Write

1.3 General Bus structure Block diagram

ADDRESS BUS

8085
MICROP-
ROCESSOR
UNIT

DATA BUS

3

{}

(MPU)

CONTROL BUS

NN

MEMORY

1l

INPUT

OUTPUT

Bus organization system of 8085 Microprocessor

1.4 Basic Architecture of 8085 (8 bit) MICrOprocessor

INTA RST6S TRAP

INTR TRSTSS | RST7S

o 1

Interrupt Coatrol

SID - SOD

!

i

<> B-Bit lnterenl Dats Bus

Senal 1O Conteod

¢

O

Y

Y

Q

Register
Amy

J

Dty Address Buffer ml

Accumulator Temp. Reg Instruction Malt
|[") Regiser (8) 1 e
w %) 1 (5
Temp. Reg. Temp. Reg
B (B C B
B Reg Reg
| S D E
b Iu ¢ Reg Reg
nd ‘x " (1]] L %)
a bt 1 3
. Machine] Reg Reg
Cycke)
Encoding Stack Poimer
{4 (16)
Program Counter
- :.;—...-“w I rementer/Decrementcs
A A Address Lavch 16
wer puwly-{. s v (16)
Tirung and Controd
X, : o
CLK Reset (8)
X GEN Cowrol Status DMA s, i
|
METEEIEN NN L
CLK OUT RD WR ALE S, S oM 1 HLDA RESET OUT
READY HOLD RESET IN ,,A,,“;‘A -1

¥ has the following configuration -

8-bit data bus

16-bit address bus, which can address upto 64KB

A 16-bit program counter

A 16-bit stack pointer

Six 8-bit registers arranged in pairs: BC, DE, HL

Requires +5V supply to operate at 3.2 MHZ single phase clock

Accumulator

Arit_hmetic and Iogic unit

8085 Microprocessor — Functional Units

8085 consists of the following functional units -

$

ADAD,
Addresw/Data Bus

8085 is pronounced as "eighty-eighty-five" microprocessor. It is an 8-bit microprocessor designed by
in 1977 using NMOS technology.

It is used in washing machines, microwave ovens, mobile phones, etc.

It is an 8-bit register used to perform arithmetic, logical, I/O & LOAD/STORE operations.
It is connected to internal data bus & ALU.

Iintel

As the name suggests, it performs arithmetic and logical operations like Addition, Subtraction, AND,

beneral purpose register

There are 6 general purpose registers in 8085 processor, i.e. B, C, D, E, H & L. Each register can holgl
§-bit data.

These registers can work in pair to hold 16-bit data and their pairing combination is like B-C, D-E & H-L

rogram counter

If is a 16-bit register used to store the memory address location of the next instruction to be executed
icroprocessor increments the program whenever an instruction is being executed, so that the prograrg
ounter points to the memory address of the next instruction that is going to be executed.

Sthck pointer

It Js also a 16-bit register works like stack, which is always incremented/decremented by 2 during push ¢
pqp operations.

Jemporary register

[f is an 8-bit register, which holds the temporary data of arithmetic and logical operations.

lag register

If is an 8-bit register having five 1-bit flip-flops, which holds either O or 1 depending upon the resu
qtored in the accumulator.

These are the set of 5 flip-flops -

9 Sign (S)

94 Zero(2)

9 Auxiliary Carry (AC)

q Parity (P)

9 Carry (C)

ks bit position is shown in the following table -

Instruction register and decoder

It is an 8-bit register. When an instruction is fetched from memory then it is stored in
the Instruction register. Instruction decoder decodes the information present in the
Instruction register.

Timing and control unit

It provides timing and control signal to the microprocessor to perform operations.
Following are the timing and control signals, which control external and internal circuits

¢ Control Signals: READY, RD’, WR’, ALE
¢ Status Signals: S0, S1, IO/M’

® DMA Signals: HOLD, HLDA

° RESET Signals: RESET IN, RESET OUT

Interrupt control

As the name suggests it controls the interrupts during a process. When a
microprocessor is executing a main program and whenever an interrupt occurs, the
microprocessor shifts the control from the main program to process the incoming
request. After the request is completed, the control goes back to the main program.

There are 5 interrupt signals in 8085 microprocessor: INTR, RST 7.5, RST 6.5, RST
5.5, TRAP.

Serial Input/output control

It controls the serial data communication by using these two instructions: SID (Serial
input data) and SOD (Serial output data).

Address buffer and address-data buffer

The content stored in the stack pointer and program counter is loaded into the address
buffer and address-data buffer to communicate with the CPU. The memory and 1/O
chips are connected to these buses; the CPU can exchange the desired data with the
memory and I/O chips.

Address bus and data bus

Data bus carries the data to be stored. It is bidirectional, whereas address bus carries

the location to where it should be stored and it is unidirectional. It is used to transfer
the data & Address I/O devices.

Xy —{

Xy —9»{]
Reset out —]
SOD w—{
SID —p»{
Trap -4—]
RST 7.5 —#»{
RST 6.5 4—{
RST 5.5 —p»{]
INTR —9»{]
INTA 4—{
ADy -p{]
AD; -
AD, p{
AD; -]
AD, -»{
AD; @]
ADg -]
AD; -

Vss —]

O 0 NO OB LN =

- -
- 0

12

S e e
O 0 N O O b W

20

N DD N NNDNDNDNDDND®

N
i

1.5 Signal Description (Pin diagram) of 8085 Microprocessor

Vce
HOLD
HLDA
CLK (out)
Reset in
Ready
IO/M

S

Vpp

The pins of a 8085 microprocessor can be classified into seven groups -
Address bus
A15-A8, it carries the most significant 8-bits of memory/IO address.

Data bus

AD7-ADOQO, it carries the least significant 8-bit address and data bus.

Control and status signals

These signals are used to identify the nature of operation. There are 3 control signal
and 3 status signals.

Three control signals are RD, WR & ALE.

* RD - This signal indicates that the selected IO or memory device is to be read
and is ready for accepting data available on the data bus.

* WR - This signal indicates that the data on the data bus is to be written into a
selected memory or 10 location.

« ALE - Itis a positive going pulse generated when a new operation is started by

the microprocessor. When the pulse goes high, it indicates address. When the
pulse goes down it indicates data.

Three status signals are 10/M, SO & S1.

I0/M

This signal is used to differentiate between 10 and Memory operations, i.e. when it is
high indicates 1O operation and when it is low then it indicates memory operation.

S1&S0
These signals are used to identify the type of current operation.

Power supply

There are 2 power supply signals - VCC & VSS. VCC indicates +5v power supply and
VSS indicates ground signal.

Clock signals

There are 3 clock signals, i.e. X1, X2, CLK OUT.

+ X1, X2 - A crystal (RC, LC N/W) is connected at these two pins and is used to

set frequency of the internal clock generator. This frequency is internally divided
by 2.

* CLK OUT - This signal is used as the system clock for devices connected with
the microprocessor.

Interrupts & externally initiated signals

Interrupts are the signals generated by external devices to request the microprocessor
to perform a task. There are 5 interrupt signals, i.e. TRAP, RST 7.5, RST 6.5, RST 5.5,
and INTR. We will discuss interrupts in detail in interrupts section.

* INTA - Itis an interrupt acknowledgment signal.

 RESET IN - This signal is used to reset the microprocessor by setting the
program counter to zero.

« RESET OUT - This signal is used to reset all the connected devices when the
microprocessor is reset.

« READY - This signal indicates that the device is ready to send or receive data. If
READY is low, then the CPU has to wait for READY to go high.

+ HOLD - This signal indicates that another master is requesting the use of the
address and data buses.

« HLDA (HOLD Acknowledge) - It indicates that the CPU has received the

HOLD request and it will relinquish the bus in the next clock cycle. HLDA is set
to low after the HOLD signal is removed.

Serial 1/0O signals

There are 2 serial signals, i.e. SID and SOD and these signals are used for serial
communication.

» SOD (Serial output data line) — The output SOD is set/reset as specified by the
SIM instruction.

» SID (Serial input data line) — The data on this line is loaded into accumulator
whenever a RIM instruction is executed.

1.6:- Register Organizations, Distinguish between SPR & GPR
, Timing & Control Module

(a) General Purpose Registers — The 8085 has six general-purpose registers to
store 8-bit data; these are identified as- B, C, D, E, H, and L. These can be combined
as register pairs — BC, DE, and HL, to perform some 16-bit operation. These registers
are used to store or copy temporary data, by using instructions, during the execution
of the program.

(b) Specific Purpose Registers —

* Accumulator:
The accumulator is an 8-bit register (can store 8-bit data) that is the part of the
arithmetic and logical unit (ALU). After performing arithmetical or logical operations,
the result is stored in accumulator. Accumulator is also defined as register A.

* Flag registers:

B B B B B B B B

7 6 S 4 3 2 1 0

fig(a)-Bit position of various flags in flag registers of 8085

The flag register is a special purpose register and it is completely different from other
registers in microprocessor. It consists of 8 bits and only 5 of them are useful. The
other three are left vacant and are used in the future Intel versions.These 5 flags are
set or reset (when value of flag is 1, then it is said to be set and when value is 0, then
it is said to be reset) after an operation according to data condition of the result in the
accumulator and other registers. The 5 flag registers are:

1. Sign Flag: It occupies the seventh bit of the flag register, which is also known
as the most significant bit. It helps the programmer to know whether the number
stored in the accumulator is positive or negative. If the sign flag is set, it means
that number stored in the accumulator is negative, and if reset, then the number
is positive.

2. Zero Flag:: It occupies the sixth bit of the flag register. It is set, when the
operation performed in the ALU results in zero(all 8 bits are zero), otherwise it
is reset. It helps in determining if two numbers are equal or not.

3. Auxillary Carry Flag: It occupies the fourth bit of the flag register. In an
arithmetic operation, when a carry flag is generated by the third bit and passed
on to the fourth bit, then Auxillary Carry flag is set. If not flag is reset. This flag
is used internally for BCD(Binary-Coded decimal Number) operations.

Note — This is the only flag register in 8085 which is not accessible by user.

4. Parity Flag: It occupies the second bit of the flag register. This flag tests for
number of 1’s in the accumulator. If the accumulator holds even number of 1’s,
then this flag is set and it is said to even parity. On the other hand if the number
of 1’s is odd, then it is reset and it is said to be odd parity.

5. Carry Flag: It occupies the zeroth bit of the flag register. If the arithmetic
operation results in a carry(if result is more than 8 bit), then Carry Flag is set;
otherwise it is reset.

(c) Memory Registers —
There are two 16-bit registers used to hold memory addresses. The size of these
registers is 16 bits because the memory addresses are 16 bits. They are :-

Program Counter: This register is used to sequence the execution of the
instructions. The function of the program counter is to point to the memory address
from which the next byte is to be fetched. When a byte (machine code) is being

Sign Flag (7th bit): It is reset(0), which means number stored in the accumulator is
positive.

Zero Flag (6th bit): Itis reset(0), thus result of the operations performed in the
ALU is non-zero.

Auxiliary Carry Flag (4th bit): We can see that b3 generates a carry which

is taken by b4, thus auxiliary carry flag gets set (1).

Parity Flag (2nd bit): It is reset(0), it means that parity is odd. The

accumulator holds odd number of 1’s.

Carry Flag (Oth bit): Itis set(1), output results in more than 8 bit.

Distinguish between SPR & GPR

Segment Registers:

» Segments are specific areas clear in a program for containing
data, code and stack.

* There are 3 main segments — Code Segment — It contains all the
instructions to be executed. A 16-bit Code Segment register or
CS register supplies the starting address of the code segment.

General purpose registers:

« General purpose registers are used to store momentary data
within the microprocessor.

« It is of sixteen bits and is divided into two eight-bit registers

1.7 Stack, Stack pointer &Stack top.

A stack (also called a pushdown stack) operates in a last-in/first-
out sense. When a new data item is entered or "pushed" onto
the top of a stack, the stack pointer increments to the next
physical memory address, and the new item is copied to that
address. When a data item is "pulled” or "popped" from the top
of a stack, the item is copied from the address of the stack
pointer, and the stack pointer decrements to the next available
item at the top of the stack

A stack pointer is a small register that stores the address of the
last program request in a stack. A stack is a

specialized buffer which stores data from the top down. As
new requests come in, they "push down" the older ones. The
most recently entered request always resides at the top of the
stack, and the program always takes requests from the top.

https://whatis.techtarget.com/definition/register
https://whatis.techtarget.com/definition/stack
https://whatis.techtarget.com/definition/buffer

1.8 Interrupts:-8085 Interrupts, Masking of
Interrupt(SIM,RIM)

In 8085 Instruction set, SIM (Set Interrupt Mask) and RIM (Read Interrupt
Mask) instructions can perform mask and unmask RST7.5, RST6.5, and
RST5.5 interrupt pins and can also read their status.

In 8085 Instruction set, SIM stands for “Set Interrupt Mask”. It is 1-Byte
instruction and it is a multi-purpose instruction. The main uses of SIM
instruction are —

Masking/unmasking of RST7.5, RST6.5, and RST5.5
Reset to 0 RST7.5 flip-flop

Perform serial output of data

When SIM instruction is executed then the content of the Accumulator
decides the action to be taken. So before executing the SIM instruction, it is
mandatory to initialize Accumulator with the required value. The meaning
and purpose of the various bits of the accumulator when SIM is executed
has been depicted below —

Unit-2: Instruction Set and Assembly Language Programming

2.1 Addressing data & Differentiate between one-byte, two-
byte &three-byte instructions with examples

& 2.2 Addressing modes in instructions with suitable examples

The 8085 instruction set is classified into 3 categories by considering the
length of the instructions. In 8085, the length is measured in terms of
“‘byte” rather then “word” because 8085 microprocessor has 8-bit data bus.
Three types of instruction are: 1-byte instruction, 2-byte instruction, and 3-
byte instruction.

1. One-byte instructions —
In 1-byte instruction, the opcode and the operand of an instruction are
represented in one byte.
- Example-1:
Task- Copy the contents of accumulator in register B.

Mnemonic- MOV B, A

Opcode- MOV

Operand- B, A

Hex Code- 47H

Binary code- 0100 0111

Example-2:

Task- Add the contents of accumulator to the contents of register B.
Mnemonic- ADD B

Opcode- ADD

Operand- B

Hex Code- 8@H

Binary code- 1000 0000

Example-3:

Task- Invert (complement) each bit in the accumulator.
Mnemonic- CMA

Opcode- CMA

Operand- NA

Hex Code- 2FH

Binary code- 0010 1111

Note — The length of these instructions is 8-bit; each requires one memory
location. The mnemonic is always followed by a letter (or two letters)
representing the registers (such as A, B, C, D, E, H, L and SP).
2. Two-byte instructions —
Two-byte instruction is the type of instruction in which the first 8 bits
indicates the opcode and the next 8 bits indicates the operand.
- Example-1:
Task- Load the hexadecimal data 32H in the accumulator.
« Mnemonic- MVI A, 32H
« Opcode- MVI
« Operand- A, 32H
« Hex Code- 3E
« 32
« Binary code- 0011
1110 0011 0010
- Example-2:
Task- Load the hexadecimal data F2H in the register B.
« Mnemonic- MVI B, F2H
« Opcode- MVI
« Operand- B, F2H
« Hex Code- 06
- F2
« Binary code- 0000
0110 1111 o010
Note — This type of instructions need two bytes to store the binary codes.
The mnemonic is always followed by 8-bit (byte) data.
3. Three-byte instructions —
Three-byte instruction is the type of instruction in which the first 8 bits
Indicates the opcode and the next two bytes specify the 16-bit address. The
low-order address is represented in second byte and the high-order
address is represented in the third byte.
- Example-1:
Task- Load contents of memory 2050H in the accumulator.
« Mnemonic- LDA 2050H
« Opcode- LDA
« Operand- 2050H
« Hex Code- 3A
« 50
« 20

Binary code- 0011 1010
0101 0000

0010 0000

Example-2:

Task- Transfer the program sequence to the memory location 2050H.
Mnemonic- JMP 2085H
Opcode- JMP

Operand- 2085H

Hex Code- C3

85

20

Binary code- 1100 0011
1000 0101

0010 0000

Note — These instructions would require three memory locations to store
the binary codes. The mnemonic is always followed by 16-bit (or adr).

Mnemonic- MOV B, A

Opcode- MOV

Operand- B, A

Hex Code- 47H

Binary code- 0100 0111

Example-2:

Task- Add the contents of accumulator to the contents of register B.
Mnemonic- ADD B

Opcode- ADD

Operand- B

Hex Code- 8©H

Binary code- 1000 0000

Example-3:

Task- Invert (complement) each bit in the accumulator.
Mnemonic- CMA

Opcode- CMA

Operand- NA

Hex Code- 2FH

Binary code- 0010 1111

Note — The length of these instructions is 8-bit; each requires one memory
location. The mnemonic is always followed by a letter (or two letters)
representing the registers (such as A, B, C, D, E, H, L and SP).

2. Two-byte instructions —
Two-byte instruction is the type of instruction in which the first 8 bits
indicates the opcode and the next 8 bits indicates the operand.

Example-1:

Task- Load the hexadecimal data 32H in the accumulator.
Mnemonic- MVI A, 32H

Opcode- MVI

Operand- A, 32H

Hex Code- 3E

32

Binary code- 0011

1110 0011 0010

Example-2:

Task- Load the hexadecimal data F2H in the register B.
Mnemonic- MVI B, F2H

Opcode- MVI
Operand- B, F2H
Hex Code- 06

F2

Binary code- 0000
9110 1111 o010

Note — This type of instructions need two bytes to store the binary codes.
The mnemonic is always followed by 8-bit (byte) data.

3. Three-byte instructions —

Three-byte instruction is the type of instruction in which the first 8 bits
Indicates the opcode and the next two bytes specify the 16-bit address. The
low-order address is represented in second byte and the high-order
address is represented in the third byte.

Example-1:

Task- Load contents of memory 2050H in the accumulator.
Mnemonic- LDA 2056H
Opcode- LDA

Operand- 2056H

Hex Code- 3A

50

20

Binary code- 0011 1010
0101 0000

0010 0000

- Example-2:
Task- Transfer the program sequence to the memory location 2050H.
« Mnemonic- JMP 2085H
« Opcode- IMP
« Operand- 2085H
+ Hex Code- C3
- 85
- 20
« Binary code- 1100 0011
- 1000 0101
0010 0000
Note — These instructions would require three memory locations to store
the binary codes. The mnemonic is always followed by 16-bit (or adr).

2.3 Instruction Set of 8085(Data Transfer, Arithmetic, Logical, Branching,
Stack& 1/0 , Machine Control)

Data transfer instructions in 8085 microprocessor

Data tranfer instructions are the instructions which transfers data in the microprocessor.
They are also called copy instructions.

Following is the table showing the list of logical instructions:

MOV Rd, Rs Rd =Rs MOV A, B
MOV Rd, M Rd = Mc MOV A, 2050
MOV M, Rs M =Rs MOV 2050, A
MVI Rd, 8-bit data Rd = 8-bit data MVI A, 50
MVI M, 8-bit data M = 8-bit data MV1 2050, 50

LDA

STA

LHLD

SHLD

LXI

LDAX

STAX

XCHG

PUSH

POP

ouT

16-bit address

16-bit address

16-bit address

16-bit address

r.p., 16-bit data

r.p.

16-bit address

none

r.p.

r.p.

8-bit port address

8-bit port address

A = contents at address

contents at address = A

directly loads at H & L registers

directly stores from H & L registers

loads the specified register pair with data

indirectly loads at the accumulator A

indirectly stores from the accumulator A

exchanges H with D, and L with E

pushes r.p. to the stack

pops the stack to r.p.

inputs contents of the specified port to A

outputs contents of A to the specified port

LDA 2050

STA 2050

LHLD 2050

SHLD 2050

LX1 H, 3050

LDAXH

STAX 2050

XCHG

PUSH H

POP H

IN 15

OUT 15

Following is the table showing the list of Arithmetic instructions with their meanings.

Opcode

Operand

Meaning Explanation

The contents of the register

or
regist memory are added to the
R Add er or contents of
memory the and _
ADD , to the accumulator the result is
stored in the
M accumulator accumulator.

Example — ADD K.

The contents of the register

or
memory & M the Carry flag are
Add register to ?od?heedcontents of the
R the accumulator
and the result is stored in
ADC accumulator with the
carr accumulat
M y or.

Example - ADC K

The 8-bit data is added to

the
Add the contents of the accumulator and
immediate the '
to the result is stored in the
ADI 8-bit data accumulator accumulator.

Example — ADI 55K

The 8-bit data and the Carry

flag are

Add the conten

immediate added to the ts of _ the

to the accumulator and the result is

ACI 8-bit data accumulator stored
; in the accumulator.

with

carry
Example — ACI 55K
The instruction stores 16-bit
data into

_ . Loa th the. pai plesignated
Reg. pair, 16bit 4 e register register r in the

LXI data pair operand.

DAD

SuUB

Reg. pair

immediate

Add the register

pair to H and L
registers

Subtract the

register or the

memory
from the
accumulator

Example - LXI K,
3025M

The 16-bit data of the
specified

register pair are added to the
contents of the HL

register.
Example - DAD K

The contents of the register or

the

memo are

ry subtracted from the
contents of the accumulator,
and the

result is stored in the
accumulator.

Example - SUB K

R
SBB

M
SUl 8-bit data
SBI 8-bit data

R
INR

M

Subtract the
source

and
borrow

from

the accumulator

Subtract

the

immediate from

the
accumulato
;

Subtract

the

immediate from

the
accumulato
;

borrow

Increme
nt

register or
memory by
1

with

the

the

The contents of the register or
the
memory & M the Borrow flag

are

tS}’l]JL')tI’aCt(E‘d from the contents of
e

accumulator and the result is
placed

in the

accumulator.

Example -

SBB K

The 8-bit data is subtracted

from the
%:hontents of the accumulator &
e

result is stored in the
accumulator.

Example — SUI
55K

The contents of register H
are

exchange content

d with the s of
regist conten

er D, and the ts of
regist L are exchanged

er with the
contents of register

E.

Example -

XCHG

The contents of the
designated

regist o th

er r e memory are

incremented by 1 and their
result is

stored at the same place.
Example -
INR K

INX

DCR

DCX

Increme

nt register
pair by

1

Decrement the

register or the
memory by
1

Decrement the
register pair by 1

The contents of the
designated
register pair are incremented by

1

and their result Is stored at the
same

place.
Example — INX
K

The contents of the
designated

register or memory are
decremented

by 1 and their result is stored at
the

same
place.
Example -
DCR K

The contents of the
designated

register pair are decremented
by 1

and their result 1s stored at the
same

place.
Example -
DCX K

The contents of the
accumulator are changed from
a binary value to two 4-bit
BCD digits.

If the value of the low-order 4-
bits in the accumulator is
greater than 9 or if AC flag is
set, the instruction adds 6 to
the low-order four bits.

DAA None Decimal adjust
accumulator

If the value of the high-order
4-bits in the accumulator is
greater than 9 or if the Carry
flag is set, the instruction adds
6 to the high-order four bits.

Example — DAA

Logical instructions in 8085 microprocessor

Logical instructions are the instructions which perform basic
logical operations such as AND, OR, etc. In 8085 microprocessor,
the destination operand is always the accumulator. Here logical
operation works on a bitwise level.

Following is the table showing the list of logical instructions:

ANA R A=AANDR ANA B

ANI

ORA

ORA

ORI

XRA

XRA

XRI

CMA

CMP

CMP

CPI

RRC

RLC

8-bit data

8-bit data

8-bit data

none

8-bit data

none

none

A = A AND 8-bit data

A=AORR

A=AO0OR Mc

A = A OR 8-bit data

A=AXORR

A=A XOR Mc

A = A XOR 8-bit data

A =1’s compliment of A

Compares R with A and triggers the flag register

Compares Mc with A and triggers the flag register

Compares 8-bit data with A and triggers the flag register

Rotate accumulator right without carry

Rotate accumulator left without carry

ANI 50

ORAB

ORA 2050

ORI 50

XRAB

XRA 2050

XRI'50

CMA

CMP B

CMP 2050

CPI 50

RRC

RLC

RAR none Rotate accumulator right with carry RAR

RAL none Rotate accumulator left with carry RAR
CMC none Compliments the carry flag CMC
STC none Sets the carry flag STC

Branching instructions in 8085 microprocessor

Branching instructions refer to the act of switching execution to a different
instruction sequence as a result of executing a branch instruction.

The three types of branching instructions are:

1. Jump (unconditional and conditional)

2. Call (unconditional and conditional)

3. Return (unconditional and conditional)

1. Jump Instructions — The jump instruction transfers the program sequence to the
memory address given in the operand based on the specified flag. Jump instructions
are 2 types: Unconditional Jump Instructions and Conditional Jump Instructions.

(a) Unconditional Jump Instructions: Transfers the program sequence to
the described memory address.

JMP address Jumps to the address JMP 2050

(b) Conditional Jump Instructions: Transfers the program sequence to the described
memory address only if the condition in satisfied.

JC address Jumps to the address if carry flag is 1 JC 2050
INC address Jumps to the address if carry flag is 0 JNC 2050
JZ address Jumps to the address if zero flag is 1 JZ 2050
JNZ address Jumps to the address if zero flag is 0 JNZ 2050
JPE address Jumps to the address if parity flag is 1 JPE 2050
JPO address Jumps to the address if parity flag is O JPO 2050
JM address Jumps to the address if sign flag is 1 JM 2050
JP address Jumps to the address if sign flag 0 JP 2050

2. Call Instructions — The call instruction transfers the program sequence to the
memory address given in the operand. Before transferring, the address of the next
instruction after CALL is pushed onto the stack. Call instructions are 2 types:
Unconditional Call Instructions and Conditional Call Instructions.

(a) Unconditional Call Instructions: It transfers the program sequence to the memory
address given in the operand.

CALL address Unconditionally calls CALL 2050

(b) Conditional Call Instructions: Only if the condition is satisfied, the instructions
executes.

CcC address Call if carry flag is 1 CC 2050
CNC address Call if carry flag is O CNC 2050
Cz address Calls if zero flag is 1 CZ 2050
CNZ address Calls if zero flag is O CNZ 2050
CPE address Calls if parity flag is 1 CPE 2050
CPO address Calls if parity flag is 0 CPO 2050
CM address Calls if sign flag is 1 CM 2050
CP address Calls if sign flag is 0 CP 2050

3. Return Instructions — The return instruction transfers the program sequence
from the subroutine to the calling program. Jump instructions are 2 types:
Unconditional Jump Instructions and Conditional Jump Instructions.

(a) Unconditional Return Instruction: The program sequence is

transferred unconditionally from the subroutine to the calling program.

RET none Return from the subroutine unconditionally RET

(b) Conditional Return Instruction: The program sequence is transferred
unconditionally from the subroutine to the calling program only is the condition is
satisfied.

RC none Return from the subroutine if carry flag is 1 RC
RNC none Return from the subroutine if carry flag is 0 RNC
RZ none Return from the subroutine if zero flag is 1 RZ
RNZ none Return from the subroutine if zero flag is 0 RNZ
RPE none Return from the subroutine if parity flag is 1 RPE
RPO none Return from the subroutine if parity flag is 0 RPO
RM none Returns from the subroutine if sign flag is 1 RM

RP none Returns from the subroutine if sign flag is 0 RP

Stack I-O and Machine Control Instructions

The following instructions affect the Stack and/or Stack Pointer:

PUSH Push Two bytes of Data onto the Stack
POP Pop Two Bytes of Data off the Stack
XTHL Exchange Top of Stack with H & L

SPHL Move content of H & L to Stack Pointer

The I/0 instructions are as follows:

IN Initiate Input Operation

ouT Initiate Output Operation

The Machine Control instructions are as follows:

ET Enable Interrupt System
DI Disable Interrupt System
HLT Halt

NOP No Operation

2.5 Memory & I/0O Addressing,

It is possible to address an 1/O port as if it were a memory location. For example, let us
say, the chip select pin of an I/O port chip is activated when address = FFFOH, |IO/M* =
0, and RD* = 0. This is shown in the following fig.

In this case, the I/O port chip is selected when the 8085 is thinking that it is addressing
memory location FFFOH for a read operation. Note that 8085 thinks that it is addressing
a memory location because it has sent out IO/M* as a logic 0. But in reality, an input
port has been selected, and the input port supplies information to the 8085. Such 1/0
ports that are addressed by the processor as if they were memory locations are called
memory-mapped I/O ports.

1 A7 -

1 ANy, —

1 As >

0 A4 —o—»

1 Ag » NAND) > » To CS* of input port chip
1 Ar— 1

1 e S ——

1 A ——»

0 RD* — -

i O/ -

In the memory location we address an Input Output port. An example to be cited as
when address = FFFOH, IO/M* = 0, and RD* = 0. Here we select the Input Output port
chip when 8085 microprocessor finds that it is memory allocated location as it is sent
out like I0/M* as a logic 0.

But in real world we select an Input Port which supplies information to 8085
Microprocessor. Like the memory locations 8085 microprocessor gets addressed by the
processor which are called memory-mapped Input Output ports.

There is a set of instructions for this memory-mapped I/O operations. E.g. STA, LDA etc.
Let us discuss STA instruction in detail for better understanding.

Register A is an 8-bit register used in 8085 to perform arithmetic, logical, /O &
LOAD/STORE operations. Register A is quite often called as an Accumulator. An
accumulator is a register for short-term, intermediate storage of arithmetic and logic data in
a computer's CPU (Central Processing Unit). In an arithmetic operation involving two
operands, one operand has to be in this register. And the result of the arithmetic operation
will be stored or accumulated in this register. Similarly, in a logical operation involving two
operands, one operand has to be in the accumulator. Also, some other operations, like
complementing and decimal adjustment, can be performed only on the accumulator.

Let us now consider a program segment which involves content of Accumulator only. In
8085 Instruction set, STA is a mnemonic that stands for STore Accumulator contents in
memory. In this instruction, Accumulator 8-bit content will be stored to a memory
location whose 16-bit address is indicated in the instruction as al6. This instruction uses
absolute addressing for specifying the destination. This instruction occupies 3-Bytes of
memory. First Byte is required for the opcode, and next successive 2-Bytes provide the
16-bit address divided into 8-bits each consecutively.

Mnemonics, Operand Opcode (in HEX) Bytes
STA Address 32

Let us consider STA 4050H as an example instruction of this type. It is a 3-Byte
instruction. The first Byte will contain the opcode hex value 32H. As in 8085 assembly
language coding supports low order Byte of the address should be mentioned at first
then the high order Byte of the address should be mentioned next. So next Byte in
memory will hold 50H and after that 40H will be kept in the last third Byte. Let us
suppose the initial content of Accumulator is ABH and initial content of memory location
4050H is CDH. So after execution, Accumulator content will remain as ABH and 4050H
location’s content will become ABH replacing its previous content CDH. The content
tracing of this instruction has been shown below -

Before After
(A) ABH ABH

(4050H) CDH ABH

The content tracing of this instruction has been shown below

Address Hex Codes Mnemonic Comment
2008 2A STA 4050H Content of the memory location 4050H A
2009 50 Low order Byte of the address
200A 40 High order Byte of the address

2.4 Simple Assembly Language Programming of 8085

8085 program to add two 8 bit numbers

Problem — Write an assembly language program to add two 8 bit numbers stored at
address 2050 and address 2051 in 8085 microprocessor. The starting address of the
program is taken as 2000.

Example —
Input Data => F9 3B
Memory Address => 2051 2050
Carry
L
Output Data => 01 34
Memory Address > 3051 3050
Algorithm —
1. Load the first number from memory location 2050 to accumualtor.
2. Move the content of accumulator to register H.
3. Load the second number from memory location 2051 to accumaltor.
4. Then add the content of register H and accumulator using “ADD” instruction

and storing result at 3050

5. The carry generated is recovered using “ADC” command and is stored at
memory location 3051

Program —

2000 LDA 2050 A<-[2050]

2003 MOV H, A H<-A

2004 LDA 2051 A<-[2051]

2007 ADDH A<-A+H

2006 MOV L, A L—A

2007 MVI1 A 00 A<00

2009 ADC A A<—A+A+carry

200A MOV H, A H—A

200B SHLD 3050 H—3051, L—3050

200E HLT

Explanation —

PhONE

No o

8.
9. SHLD 3050 moves the contents of L register (34) in 3050 memory location

LDA 2050 moves the contents of 2050 memory location to the accumulator.

MOV H, A copies contents of Accumulator to register H to A

LDA 2051 moves the contents of 2051 memory location to the accumulator.

ADD H adds contents of A (Accumulator) and H register (F9). The result is stored
in A itself. For all arithmetic instructions A is by default an operand and A
stores the result as well

MOV L, A copies contents of A (34) to L

MVI A 00 moves immediate data (i.e., 00) to A

ADC A adds contents of A(00), contents of register specified (i.e A) and carry (1).
As ADC is also an arithmetic operation, A is by default an operand and A stores

the result as well

MOV H, A copies contents of A (01) to H

and contents of H register (01) in 3051 memory location

10.HLT stops executing the program and halts any further execution

8085 program to subtract two 8-bit numbers with or without borrow

Problem — Write a program to subtract two 8-bit numbers with or without borrow where
first number is at 2500 memory address and second number is at 2501 memory
address and store the result into 2502 and borrow into 2503 memory address.
Example —

H-L
——

Input Datac=>| 03 04
Memory Address =>| 2501 | 2500

Bonirow Refult

Output Data >| 01 01
Memory Address =>| 2503 | 2502

Algorithm —

1. Load 00 in a register C (for borrow)

2. Load two 8-bit number from memory into registers

3. Move one number to accumulator

4. Subtract the second number with accumulator

5. If borrow is not equal to 1, go to step 7

6. Increment register for borrow by 1

7. Store accumulator content in memory

8. Move content of register into accumulator

9. Store content of accumulator in other memory location
10. Stop
Program -

2000 MVI C, 00 [C] <-00

2002 LHLD 2500 [H-L] <- [2500]

2005 MOV A H [A] <- [H]

2006 SUB L [A] <- [A] - [L]
2007 JNC 200B Jump If no borrow
200A INR C [C] <- [C] + 1
200B STA 2502 [A] -> [2502], Result
200E MOV A, C [A] <- [C]

2010 STA 2503 [A] -> [2503], Borrow
2013 HLT Stop

Explanation — Registers A, H, L, C are used for general purpose:

MOV is used to transfer the data from memory to accumulator (1 Byte)

LHLD is used to load register pair directly using 16-bit address (3 Byte instruction)
MVI is used to move data immediately into any of registers (2 Byte)

STA is used to store the content of accumulator into memory(3 Byte instruction)
INR is used to increase register by 1 (1 Byte instruction)

JNC is used to jump if no borrow (3 Byte instruction)

SUB is used to subtract two numbers where one number is in accumulator(1l Byte)
HLT is used to halt the program.

PN RWNE

N\ac,\um. C«QC\QQ %, \Tmr?(’D . 3

\n&&fcucscon C";ﬂ\q— , .
as 2tls A‘“"" Y \'0 QQX& waibl
one. ComYLLXQ \‘\92«»‘-‘(!*0“ N\ "mxz:gdbn ﬁ:;\e {a% g\
A . Tedch c;bg\q.) LR
- Emw.\)tt U-%C\Q '
Taddh Cide-_ ' '

-»»"W.as L’\Z&;l«me, \@z\u&m@\\aa-\ké W%%d\\b&%@
&} an <n o0 .
2 e %nﬁ\kﬂ%e LANN Ol’f\e 35 Mg Ae}exwwe\ ﬁpa—\’b&\m <

\:ﬁ’g N .v\q&mudwﬂ) vy
E*c oM QAC\Q

“WWGk Tz M'*"’Q- V&"V*'w\ \03»’*9 \p o eméx,ih,"‘qge; Nk
‘q'\ggm.\érOh - !

NMeine. cygl Sy A

i, 8 u-sm\w—m\wo\\o No pp e\m Yam\'?bﬂ
&ao:e%&rzohc B\Sﬁl g“SDM"M-QAemc& “~o:9u\9~ W Y‘) |

WA»hQ c;a(\e X QgL - Y p
M e aa— Uaﬂ\e"& KO%Y” Q«Q%chn \e&w o
| e ‘3‘0[&‘\ ‘RO \OK 51 b A TS Y
opedefddn | 0 | O [V VIV | L,LAL
MemRead | © |V [O[M]O] | Elg
Tom Wate | O 0 L,Q____L___L__\é_\
M Read G Aanefesm|ol YA 3
Tlo Lede | o | ' |O]) l 3 |
2 \\| W T PR IEE | 3ok |
RueTde | O | V|1 OJO] | 3 |

canned wi amoscanner

7 gt B S B)
T T ok b wwd do Rl e opeede, Reomrb ey |
~ T ;ac—\»\e Rregh mq&ii- C«:ick\"f a2 Enghrouckon |
L ST Cm‘wh o e ,@_oég € 7 i sl
- % n chir\eno!\B N ::QMQ \au)r Kome. ;nbx‘md;om R?\NT@Q
R 6T-dade opede fekda- | SO I
- Ng-Ag Co s e \A:ig\"éxﬂ kzqe 01?'\\60- G\CH@SPS@Q.D
- Ag ALE % '\Wigh AD3-ADO Corving e lotoore lole of -
e addwan(pel) - S
= g»'m_@Q__ {l(%éo.n Q‘UC!Q_'QQ}CL\ C%Ch’)g\&QO ‘%D_m(&'\) | ,
‘ - S z)\zs aw\emwa O\:mtakon ,jg@?mlm'?eg Qmo |
Derdeg 12 R
- A A o a . p ot
i p; LE e&oeﬂg; Sreess 24 reamoned] Rerorm Ay Do
RD qpes %o, dola apresecs on Myi-Apo.

s %‘Rﬁmm-@ -"’m*\m wﬂ!*-ﬁak urﬂ. EEWD\!H uﬁa%b&
= Dk oot 00 BD3 ADoK\ Rp s Qoo
[Purdg 1y o ‘

- T e 1 w2 by M g do docode Moo Ofmh

Scanned with CamsScanner

x —
@sl f ‘\; " ~
©l/
RD ,
81 Diowo e 20 dlagemen. Rore b .
\“\WR&@\ 9 W& /-

—The %ceuumé\‘\‘ogewomg Q(NNWO

an \oe d Yo felcls < . an g
g e i,

- \'\XY\O @mmm&&%z‘g
- ’Uf RQc\u.\sz & T

. Ae. gt Rk \;et’g*\&q&\m&%@q\-})_ ‘
© Ag Con\m'\g - c?,ép‘j,\g e Qﬁwm‘o@("\‘\,\k
— A ALE 3 Wighy NISH-DO .
oddws(pelL) -
- R i} i« temory maAaO(\e)Q\ ameg‘«\?&«
Nu-— Linay ™ B a memw:a ?e_me\van wTolm a“qq"@
: 'r\%":a

= ALE.aoeg lo©

Scanned with CamScanner

145

A b" '-ADQ

[e

Scanned with CamScanner

- s C'AC“’- 22 wied Yo Qﬂh&@“*ﬁ) ore B&Q &nle Nea- mmua
— W5 ot Corrpuitoryy i uaa\o -

— T reoqiitead BTr WhecheR

~ MG-Ag Cortdina e Where \'b"'* o} o e Gery) ,
~ he ALE & \A}%Q‘,‘ hg:;—_l\bo Can\uim*\fb& Qowm ‘oa!.cg'\\&

odrssslpel): sl |
v y torske cxde, @0 oes lagh -

- Qe 2) = o

- o X A memDUQ O\m“k"“)Tﬁtﬁ' (Zf"eg 9‘”‘3‘
19 L) _ o

§

ALE yoes Lo

- PAdrezx 3¢ \csm\ovzavetcom AD3-4DD |, ;
- D aw«q-pm‘«b;*DO&wkaoam *

Duc o3
T oko remdns o0 AT -4DD AAWR Hdon

} T e

A A8[X - wvowlig |
Abt-A0o0 [X s -ad) opcdoe Y
ALE 5[\- \\\- |
Toli x

St
w |/ |
w ~ | A

Scanned With Camgcanner

T :—‘Wﬂ\.-ﬁ ! 'lf \‘ ‘4“‘7.','5,- "

llo Qms\mx%&%.

—This oylle wed) h&&&omb‘d?e Beom anfo fodd. -
- To vesad voeci st UQQ\Q.'?A*Q\M\O.R '\'O’M M
oo reachie. cude mmmmﬁuem“
Nj‘« Fore To

-

Dw:a{?\ .

- The Q.uoczxc Q bite O:Q%'.IO ow‘\—l&AA ‘
o ~he ‘N'g“ﬂf Orlerc od&ma‘;s bug s 19‘(8% O\Q?Q]m*
-2 ALE “‘u \Mjl« M)q m)o cm&ams‘*&%w“’a‘eﬁ-"g

W add oy
- Qe 'zs\— 2 an To O\ﬂfm\"m Sb\‘“ ‘6093 t’“’%&

%ul‘m
— ALE 10 Lo
— PNMrogs = veamoved fv -koo'
- M RDWQS 9"‘? fm‘*q’(’(’?mﬂ on AM*ABU
Dursrg 3 | ;
“'Dd:\« ferrdin o MH &DOH\ RD'K hua |

ST WTQ*_T;—‘-L
NN
A5G- 7 ‘ \ 7
el DT

ALe | d]

Tofis |/

e ,_/ :]

So

&5 N

toR

Scanned with CamScanner

A wcf\‘nn-gt;e. Of Dreo TW ATy &W“J‘Wﬁ'_
- T ulc\e 5 uted Yo Qc.k\Qm{a\e)m ‘owge_,’mkb a«llo‘xrﬁ .
— The Tlo Wre \m(\«}m_cac\t 2t Rinvlare 40 Aa rrere
Wrake \Nxc\ﬁu. %‘L .(nu‘r\'w SO‘ﬁ %QN(‘JA =
T et e
— Tt requires 37- oy
1}«3«3 ™ \ : |
— Tre Roweré g ke of ke lo pord Aiceor ara_
dupheaded 3eto Wl Wghere oredere oM weaty wlfuug.
- A8 ALE B Wk ADA-ADO corting Ao lovescbighe of
Yo addwols . % .
- Qncs 3 gon Ho orite cgele) B goes g
~Qince 34 &' o‘g}@&m; 30(w. 8&;& Wi
Durding 12 L |
- ALE aﬂe—s &oua 5
— Adkeogs 3y reemoved Kreom KOF-Ao.
—D-zkaweoma o) AD* -ADO 2:\00\{%022 low .
Durd) 13
= Dada twaig 00 ADF-ADo & RD % e,
. Ti T T8
- — | |
/NS
AE-hg X Tlo Addvels

m-MbC}C -

-
-

LN)

Tolin f
S\ k
e |

RD — .
Scanned wi amscanner

' O Dres Awe -*‘m«a choa«amqf Om.i\)«a&einwm

o Drrad Ha -‘xw& Amanom #orc-\f\u ‘insg'rwtv‘?’on Moy A

| a Mo insheckon MOV A)B % o 4 Bai}g, ‘Zn&&'rwc}?vn

-

)

(\ ‘ d L
“M‘Nﬁ A;c»%m ’?—m 0V AR

Scanned with CamScanner

Vil Ve -Hwaoo':wgfm S ST T ™y a.

ﬁ; D Br25H 3 & abde dondude.

T echne pde| Addos B | Dok Bos | 1- g ™|
r_O_Pc;\lé% Y3 (36 [4 %
t ﬁ\e,motv(u, Qeﬁ

A
- B
"
e 4
» L4 - . ' ‘ ¢
A ¢ ; /) ,
¢ ” ¥ .

t

. ({\(’*”‘(’5’ ’D«er Tore VT boos

gcannea WIH ! Eamgcanner

%

1

/T

% S
,-.So Vol
=R}

Tiding Disgrun Foce LDA 3005

x|

— T —

S

canned with Camscanner

	LECTURE NOTES
	ON
	MICROPROCESSOR & MICROCONTROLLER
	DIPLOMA
	Subject code-TH3
	4TH SEMESTER , E&TC ENGINEERING
	PREPARED BY
	YASOBANTI NAYAK (Lecturer in E&TC)
	Microcomputer
	Microprocessor
	It is used in washing machines, microwave ovens, mobile phones, etc.
	8085 Microprocessor – Functional Units
	Accumulator
	Arithmetic and logic unit
	Stack pointer
	Temporary register
	It is an 8-bit register, which holds the temporary data of arithmetic and logical operations.
	Flag register
	Instruction register and decoder
	Timing and control unit
	Interrupt control
	Serial Input/output control
	Address buffer and address-data buffer
	Address bus and data bus
	Address bus
	A15-A8, it carries the most significant 8-bits of memory/IO address.
	Data bus
	AD7-AD0, it carries the least significant 8-bit address and data bus.
	Control and status signals
	Three control signals are RD, WR & ALE.
	Three status signals are IO/M, S0 & S1.
	IO/M
	S1&S0
	These signals are used to identify the type of current operation.
	Power supply
	Clock signals
	There are 3 clock signals, i.e. X1, X2, CLK OUT.
	Interrupts & externally initiated signals
	Serial I/O signals
	Distinguish between SPR & GPR
	Segment Registers:
	General purpose registers:
	1.7 Stack, Stack pointer &Stack top.
	1.8 Interrupts:-8085 Interrupts, Masking of Interrupt(SIM,RIM)
	Unit-2: Instruction Set and Assembly Language Programming
	Task- Copy the contents of accumulator in register B.
	Mnemonic- MOV B, A
	Task- Invert (complement) each bit in the accumulator.
	Binary code- 0010 1111
	Task- Load the hexadecimal data 32H in the accumulator.
	Task- Load the hexadecimal data F2H in the register B.
	Mnemonic- MOV B, A (1)
	Task- Invert (complement) each bit in the accumulator. (1)
	Task- Load the hexadecimal data 32H in the accumulator. (1)
	Data transfer instructions in 8085 microprocessor
	Following is the table showing the list of Arithmetic instructions with their meanings.
	Opcode
	Operand
	Meaning
	DAA
	None
	Logical instructions in 8085 microprocessor
	Following is the table showing the list of logical instructions:
	Branching instructions in 8085 microprocessor
	Stack I-O and Machine Control Instructions
	There is a set of instructions for this memory-mapped I/O operations. E.g. STA, LDA etc.
	Let us discuss STA instruction in detail for better understanding.
	Mnemonics, Operand
	Opcode (in HEX)
	Bytes
	STA Address
	Before
	After
	ABH
	CDH
	The content tracing of this instruction has been shown below
	Example –
	Algorithm –
	Program –
	Explanation –
	Example – (1)
	Algorithm – (1)
	Program – (1)

