JHARSUGUDA ENGINEERING SCHOOL, JHARSUGUDA DEPARTMENT OF CIVIL ENGINEERING LESSON PLAN PROGRAMME: DIPLOMA IN CIVIL ENGINEERING <u>SESSION- WINTER 2021</u>

SUBJECT-STRUCTURAL MECHANICS (Th 1)

Name Of The Faculty- Sri Dhanurjaya Behera

BRANCH – CIVIL Engineering SEMESTER- 3rd sem

Chapter	Week No.	Class Day	Lecture No.	Topic to be Covered
1				REVIEW OF BASIC CONCEPTS
		lst	1	Definitions of Force, Moment, support conditions, Conditions of equilibrium.
		2nd	2	Centroid of geometrical figures, centroid of composite figures.
	1st	3rd	3	Moment of Inertia – Definition, Parallel axis & Perpendicular axis Theorems.
	-	4th	4	M.I. of plane lamina & different engineering section.
<u>_</u>				SIMPLE AND COMPLEX STRESS, STRAIN
	1 st	5th	5	Introduction to stresses and strains. Mechanical properties of materials
	2nd	lst	6	Types of stresses, Types of strains, Complimentary shear.
		2nd	7	Hooke's law ,Elastic Constants, Derivation of relationship between the elastic constants.
		3rd	8	Concept of Stress- Strain curve of a ductile material.
		4th	9	Significance of percentage elongation and reduction in area of cross section.
		5th	10	Deformation of prismatic bars due to uniaxial load.
F	3rd	lst	11	Deformation of prismatic bars due to its self weight.

2		2nd	12	Elongation and Contraction, Poisson's Ratio, volumetric strain.
	3rd	3rd	13	Introduction to Principal stresses and strains, Occurrence of normal and tangential stresses.
		4th	14	Concept of Principal stress and Principal Planes, major and minor principal stresses .
		5th	15	Streses in an oblique section of a body subjected to a direct stress in one plane and in two mutually
		500		perpendicular direction.
		lst	16	Streses in an oblique section of a body subjected to a simple shear stress only
				and a direct shear stress accompained by a simple shear stress.
				Streses in an oblique section of a body subjected to direct stress in two mutually perpendicular
	4th	2nd	17	direction accompanied by a simple
	40			shear stress.
		3rd	18	Mohr's Circle and its basic concepts.
		4th	19	Application of Mohr's circle to solve problems of complex stresses.
3				STRESSES IN BEAMS AND SHAFTS
		5th	20	Bending stress in beams – Theory of simple bending & its Assumptions.
	4th	500		
		1 st	21	Equation for Flexure, Position of N.A. and Centroidal Axis.
		2nd	22	Flexural rigidity & Significance of Section modulus.
	5th		22	Shear stress distribution in beams and standard sections symmetrical about vertical axis.
	Jui	3rd	23	Stresses in shafts due to torsion-Concept of torsion, basic assumptions of pure torsion.
		4th	24	torsion of solid and hollow circular sections, polar moment of inertia.
		5th	25	
		l st	26	Concept torsional rigidity, equation of torsion.
	6th	2nd	27	Concept of combined bending and direct stresses.

3		3rd	8	Conditions for no tension.
	6th	4th	9	Middle third/fourth rule, Core or Kern for different sections, chimneys, dams and retaining walls.
4				COLUMNS AND STRUTS
	6th	5th	30	Definitions of Short and Long columns, End conditions & Effective length.
		1st	31	Slenderness ratio, Euler's theory of long colum.
	7th	2nd	32	Critical load for Columns with different end conditions.
	, cit	3rd	33	CLASS TEST
5				SHEAR FORCE AND BENDING MOMENT
		4th	34	Types of Load, Types of Support, Types of Beams based on support conditions.
	7th	5th	35	Calculation of support reactions using equations of static equilibrium.
		1st	36	Concept of Shear Force and Bending Moment, Signs Convention for S.F. and B.M.
		2nd	37	Relation between intensity of load, S.F and B.M.
	8th	3rd	38	S.F and B.M diagrams for Cantilever beams.
		4th	39	S.F and B.M diagrams for Simply supported beams.
		5th	40	Discussion of different problems regarding to above concepts.
	9th	lst	41	S.F and B.M diagrams for Over hanging beams.
		2nd	42	Concept and calculation of maximum BM, Point of contra flexure.
		3rd	43	Discussion of various problems regarding to above concept.
		4th	44	CLASS TEST QUSTIONS DISCUSSION & DISTRIBUTION OF EVALUATED ANSWER SHEET TO THE STUDENTS FOR THEIR REFERENCES.
		5th	45	DISCUSSION OF ASSIGNMENT-1 QUESTIONS.

6				SLOPE AND DEFLECTION
		lst	46	Basic concept of slope and deflection for various beam with boundary conditions.
		2nd	47	Determination of slope and deflection of Cantilever beam-by double integration method.
	10th	3rd	48	Determination of slope and deflection of Cantilever beam-by Macaulay's method.
	Tour	4th	49	Determination of slope and deflection of simply supported beam-by double integration method.
		5th	50	Determination of slope and deflection of simply supported beam-by Macaulay's method.
	1 1 th	lst	51	calculation of maximum slope and deflection at free end of a cantilever under various loading condition.
		2nd	52	calculation of maximum slope and deflection of a simply supported beam under various loading condition.
		3rd	53	Discussion of various problems regarding to the above concept.
		4th	54	Relationship between slope, deflection and curvature.
		5th	55	DISCUSSION OF ASSIGNMENT-2 QUESTIONS.
7				INDETERMINATE BEAMS
		1st	56	Concept of determinant and indeterminate structure.
	12th	2nd	57	calculation of indeterminacy of different beam.
		3rd	58	Principle of consistent deformation/compatibility.
		4th	59	Analysis of propped cantilever beam.
		5th	60	SF and BM diagrams (point load and udl covering full span)of propped cantilever.
		1 st	61	Analysis of fixed beam.
	13th	2nd	62	SF and BM diagrams of fixed beam .

7		3rd	63	Analysis of two span continuous beams by principle of superposition.
	13th	4th	64	SF and BM diagrams of continuous beam.
		5th	65	Discussion of various problems regarding to the above concept.
8				TRUSSES
		lst	66	Types of trusses, statically determinate and indeterminate trusses
	l4th	2nd	67	Determination of degree of indeterminacy and stability of trusses.
		3rd	68	Analysis of Truss by Method of joints.
		4th	69	Analysis of Truss by Method of section.
		5th	70	DISCUSSION OF ASSIGNMENT-3 QUESTIONS.
9		lst	71	CLASS TEST
		2nd	72	PREVIOUS SEMESTER QUESTIONS DISCUSSION
	15th	3rd	73	PREVIOUS SEMESTER QUESTIONS DISCUSSION
		4th	74	PREVIOUS SEMESTER QUESTIONS DISCUSSION
		5th	75	PREVIOUS SEMESTER QUESTIONS DISCUSSION

Signature of Faculty Member

Г

Counter Signature of H.O.D.