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UNIT I 

 
STRESSES AND STRAINS 

(SIMPLE & PRINCIPAL) 

Stress is proportional to strain within its elastic limit. This law is known as Hooke‟s law. 
The material will not return to original shape if the applied stress is more than E. 

ζ αε Stress - ζ Linear Strain – ε 

Therefore, ζ = Eε Where E Modulus of Elasticity or Young‟s Modulus. 

P 

ζ = --------- 
A 

P – Load 

A- Area of the section where the load is applied. 
 

Stresses are three types tensile, compressive, and shear stress. Moment and 

torsion will produced any of these stresses. 

 

Strain is nothing but deformation (change in length, breadth, height, diameter, 
therefore area or volume) of the body or material due to load. Therefore strain is change in 
dimension to the original dimension. It may be length or volume. 

δL 

ε= -----------δL– Change in length 
L L – Original length 

 

Therefore by substituting the value of ζ and εin the Hook‟s law. Change in length is 

PL 

δ L= --------- 
AE 

4PL 

δL= ----------- uniformly varying circular section П 

Ed1d2 

 

 

 

PL 

δ L= -------------log e(a/b) uniformly varying rectangular section a>b 
Et(a-b) 

 

This is the fundamental equation to find change in length of any type of section or 

step section using principle of superposition method of varying load, length, area, and 

material. The change in length due to compressive load is taken as negative and positive for 

tensile load. 

 

Units : 

 
The basic units of stress in S.I units i.e. (International system) are N / m2 (or Pa) MPa 
= 106 Pa GPa = 109 Pa 
KPa = 103 Pa 

Sometimes N / mm2 units are also used, because this is an equivalent to MPa. While US 
customary unit is pound per square inch psi. 
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letter (ζ) 

TYPES OF STRESSES : Only two basic stresses exists : (1) normal stress and (2) shear 

stress. Other stresses either are similar to these basic stresses or are a combination of this e.g. 

bending stress is a combination tensile, compressive and shear stresses. Torsional stress, as 

encountered in twisting of a shaft is a shearing stress. Let us define the normal stresses and 

shear stresses in the following sections. 

 
Normal stresses : We have defined stress as force per unit area. If the stresses are normal to 

the areas concerned, then these are termed as normal stresses. The normal stresses are 

generally denoted by a Greek 

 

 
 

 

 

 

This is also known as uniaxial state of stress, because the stresses acts only in one direction 

however, such a state rarely exists, therefore we have biaxial and triaxial state of stresses 

where either the two mutually perpendicular normal stresses acts or three mutually 

perpendicular normal stresses acts as shown in the figures below : 

Tensile or compressive Stresses: 

 
The normal stresses can be either tensile or compressive whether the stresses acts out of 

the area or into the area 
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Shear Stresses: 

 

Let us consider now the situation, where the cross – sectional area of a block of material is 

subject to a distribution of forces which are parallel, rather than normal, to the area 

concerned. Such forces are associated with a shearing of the material, and are referred to as 

shear forces. The resulting stress is known as shear stress. 
 

 

Deformation of a Body due to Self Weight 
 

Consider a bar AB hanging freely under its own weight as shown in the figure. 

Let 

L= length of the bar 

 
A= cross-sectional area of the bar 

 
E= Young‟s modulus of the bar material w= 

Specific weight of the bar material 

Then deformation due to the self-weight of the bar 

 

 
Members in Uni – axial state of stress 

For a prismatic bar loaded in tension by an axial force P, the elongation of the 

bar can be determined as 
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PBC 

PAB 

Suppose the bar is loaded at one or more intermediate positions, then equation 

(1) can be readily adapted to handle this situation, i.e. we can determine the axial force in 

each part of the bar i.e. parts AB, BC, CD, and calculate the elongation or shortening of each 

part separately, finally, these changes in lengths can be added algebraically to obtain the total 

charge in length of the entire bar. 

 

 

 

 

 
 

B C D 
 

 
 

 

 
 

P1 
 

 
 

 
 

P2 
 

 
 

 

 

 

 

 

PCD 

 

 

Principle of Superposition 
 

The principle of superposition states that when there are numbers of loads are acting together 

on an elastic material, the resultant strain will be the sum of individual strains caused by each 

load acting separately. 

 

Types of problem 

Both ends are free (to expand or shrink) determinate structure: 

Total change in length is equal to algebraic sum of change in length of each 
section of its load P, length L, Area A, and Young‟s modulus E. These parameters may 
vary from section to section. The material is free to expand and shrink. 

δL =δ 1+ δ2+ δ3+ …..+ δn 

 

P1 P4 

Both ends are fixed (cannot expand or shrink) indeterminate structure: 
 

Total change in length is zero because the ends are fixed which will not allow the 

sections to expand or shrink. Load or stress is produced by expansion or shrinkage of the 

section is taken by the ends. Therefore ends carry some load or stress. 

 
Using principle of superposition the reactions at the end of each section is found 

from free body diagram. Equate the direction of force in free body diagram to force 
applied for each section, 



6  

A 

 

PAB- PBc= P1 

PBC + PCD = P2Equations –(A) 

The equation shows that the section AB and BC is under tension and CD under 

compression. The direction of load in each section can be chosen as we desire, but if the final 

result is negative then the direction chosen is incorrect but the answer is correct. So in other 

words tensile force is actually a compressive force vice versa. 

 
Sum of change in length of each section due to expansion is equal to sum of 

change in length of each section due to compression. The load P, length L, Area A, and 

Young‟s modulus E parameters may vary from section to section. 
 

Expansion section = Compression section 

δ1+ δ2+....+ δn= δ3+ δ4+ …..+ δn Equations – (B) 

Using equation A and B the problem can be solved. 

Composite Material of Equal length 

Reinforced Columns, Supporting load, Suspended load, Composite structure of 
equal length (example pipe inside a pipe) these problems can be solved with the following 
expression. 

The change length is same for all materials in that structure. Example in 

reinforced concrete column (RCC), steel and concrete length change equally, similarly for 

supporting load, 

suspended load, and composite structure of equal length. Therefore to solve these 
problems use the following expressions. 

 

Change in length of concrete = change in length of 

steel δlc= δlsEquation – (A) 

It is same as equation below for equal length only 
 

ζ c 
----- 

ζs 
= ------- 

Ec Es 

For unequal length it is 

ζcLc 
ζsLs 

=------- 

Ec Es 

The load P may be shared by two material equally or unequally. 

 
P = P c+ P sP is Total load, Pcload taken by concrete and Ps 

steel. Or P = Acζc+ Asζs(B) 
 

When the lengths of the composite material are equal by substituting B in A, find 

the stresses in the materials. 
 

The ratio of Es/ Ec is known as modular ratio 
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Composite Material of Unequal length tubular section 

1. Find the material or section whose length is shorter or longer than other material. 

1. Calculate the load required to make the section of equal length using formula of δl. 
2. This will give the remaining load that will be shared by both the sections. 
3. At this point onwards it is similar to composite material of equal length. 

 

 

Bolt and Nut: 
 

 

 

 

 
tube. 

Load in bolt = Load in tube 

ζbAb= ζtAt 

Change in length is sum of change in length in bolt and change in length in 

 
δ= δb+  δt 

 

Thermal Stresses: 

δl 

------ = 

 
l αt – - 
------------- 

 

 
Equation (C) 

When tLhere is inclrease in temperature the material expands this will produce 
stress. This is known as thermal stress. 

 
δl= L αt 

Thermal stresses when the material is not allowed to expand: 

 

δl 

ε = ------ = αt --------- Equation (A) 
L 

ζ = Eε -------- Equation (B) 

 

Substituting A in B 

 

ζ = E αt 

 

Thermal stresses when the material is allowed to expand to a length Δ: 

δl= l αt – 

ε= 

 

Therefore stress is ζ = Eε. 

 

Thermal Stresses in composite bars: 

Therefore load in brass is equal to load in steel because temperature is 

assumed to be uniform. 

ζsAs= ζbAb  - (A) 

Change lengths are therefore strains are equal thus, 
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αbt - ζb 
----- 

 

= 
αst + ζs 

------ ----------Equation 

Eb  Es 
 

 

Substituting equation A in B to find the stresses in the material. 
 

When the thermal coefficient of one material is larger than the other then that 

material will be under compression and the other material will be under tension. Thus 

brass is under compression and steel is under tension in our example. 
 

Volumetric Strain: 

Change in volume to the original volume is known as volumetric strain. 

Poisson ratio: It is the ratio of lateral strain to the linear strain. It is denoted by symbol µ 

 
lateral strain 1 

µ = ------------------------ or m = -------- 
linearstrain µ 

Change in volume due to axial load in all three directions for a cube or cuboids 

 
δv 

----- 
1 (ζ x + ζ y + ζ z)(1-2 

µ) = --- 

V E 

 

This equation is valid only when all the loads are applied as tensile load. The 
same equation can be used for the following loads, 

1. Compressive load change to minus sign to that direction only for the above formula. 

2. Load only in one direction the remaining stresses are zero. 

3. Load in two directions the remaining stress is zero. 
 

Change in volume due to axial load for a cylindrical rod 

 
Change in diameter in cylinder is εc= δd/d 

Change in length in cylinder is εl= δl/l 

 
Therefore change in volume of cylindrical rod; 

δv 
------ = εl- 2εc (Minus sign lateral strain are compressive forces) OR 

V  

 

δv 1 (ζx)(1-2 µ) 

------ = --- Where, ζy and ζz are zero because load in one direction only. 

V E 

 

Three important moduli’s are Elasticity, Bulk, and Rigidity 

Modulus of Elasticity 
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Modulus of Rigidity: Shear stress is proportional to shear strain 

 

 
Strain Energy in Sudden Load 

The stress due to sudden load is found by equating the equation (A) in the following 
equation. 

 

Strain Energy in Impact Load 

U = Load x (height + Change in length) 

 

1 
+ 
√1+2Eh(PL) 

The stress ζ due to impact load when δLis negligible 
 

√2EPh ζ = --- 

-------------- 

AL 

2 
V

 

The stress ζ due to impact load when δLis not negligible 
 

P 

ζ = ------- A 

 
Strain energy due to impact load is found by substituting the stress ζ due to impact 

load in the following equation. 

 
ζ 

U = ------------ 2E 

Problem 
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Strain: 

When a single force or a system force acts on a body, it undergoes some 

deformation. This 

deformation per unit length is known as strain. Mathematically strain may be defined as 

deformation 

per unit length. 

So, 

Strain=Elongation/Original length 

 
Elasticity; 

 

The property of material by virtue of which it returns to its original shape and size upon 

removal of load is known as elasticity. 

Hooks Law 

It states that within elastic limit stress is proportional to strain. Mathematically 

E= Stress 
 

Strain 

 
Where E = Young‟s Modulus 

 
Hooks law holds good equally for tension and compression. 

 
Poisson’s Ratio; 

 

The ratio lateral strain to longitudinal strain produced by a single stress is known as Poisson‟s 

ratio. 

Symbol used for poisson‟s ratio is nu or 1/ m . 

Modulus of Elasticity (or Young’s Modulus) 
 

Young‟s modulus is defined as the ratio of stress to strain within elastic limit. 

 
Shear Strain 

 

The distortion produced by shear stress on an element or rectangular block is shown in the 

figure. The shear strain or „slide‟ is expressed by angle ϕ and it can be defined as the change 

in the right angle. It is measured in radians and is dimensionless in nature. 
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Modulus of Rigidity 
 

For elastic materials it is found that shear stress is proportional to the shear strain within 

elastic limit. 

The ratio is called modulus rigidity. It is denoted by the symbol „G‟ or „C‟. 

 
Bulk modulus (K): It is defined as the ratio of uniform stress intensity to the volumetric 

strain. 

It is denoted by the symbol K. 

 
Relation between elastic constants: 

 

Elastic constants: These are the relations which determine the deformations produced by a 

given stress system acting on a particular material. These factors are constant within elastic 

limit, and known as modulus of elasticity E, modulus of rigidity G, Bulk modulus K and 

Poisson‟s ratio μ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Relationship between modulus of elasticity (E) and bulk modulus (K): 
 

 

 

Relationship between modulus of elasticity (E) and modulus of rigidity (G): 

Stress – strain diagram for mild steel 
 

 

A typical tensile test curve for the mild steel has been shown below 
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SALIENT POINTS OF THE GRAPH: 

(A) So it is evident form the graph that the strain is proportional to strain or elongation is 

proportional to the load giving a st.line relationship. This law of proportionality is valid upto 

a point A. 

or we can say that point A is some ultimate point when the linear nature of the graph ceases 

or there is a deviation from the linear nature. This point is known as the limit of 

proportionality or the proportionality limit. 

(B) For a short period beyond the point A, the material may still be elastic in the sense that 

the deformations are completely recovered when the load is removed. The limiting point B is 

termed as Elastic Limit . 

(C) and (D) - Beyond the elastic limit plastic deformation occurs and strains are not totally 

recoverable. There will be thus permanent deformation or permanent set when load is 

removed. These two points are termed as upper and lower yield points respectively. The 

stress at the yield point is called the yield strength. 

A study a stress – strain diagrams shows that the yield point is so near the proportional limit  

that for most purpose the two may be taken as one. However, it is much easier to locate the 

former. For material which do not posses a well define yield points, In order to find the yield 

point or yield strength, an offset method is applied. 

In this method a line is drawn parallel to the straight line portion of initial stress diagram by 

off setting this by an amount equal to 0.2% of the strain as shown as below and this happens 

especially for the low carbon steel. 

 
 

(E) A further increase in the load will cause marked deformation in the whole volume of the 

metal. The maximum load which the specimen can with stand without failure is called the 

load at the ultimate strength. 

The highest point „E' of the diagram corresponds to the ultimate strength of a material. 
su = Stress which the specimen can with stand without failure & is known as Ultimate 
Strength or 

Tensile Strength. 

su is equal to load at E divided by the original cross-sectional area of the bar. 

(F) Beyond point E, the bar begins to forms neck. The load falling from the maximum until 

fracture occurs at F. Beyond point E, the cross-sectional area of the specimen begins to 

reduce rapidly over a relatively small length of bar and the bar is said to form a neck. This 

necking takes place whilst the load reduces, and fracture of the bar finally occurs at point F. 
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Nominal stress – Strain OR Conventional Stress – Strain diagrams: 

Stresses are usually computed on the basis of the original area of the specimen; such 

stresses are often referred to as conventional or nominal stresses. 

True stress – Strain Diagram: 

Since when a material is subjected to a uniaxial load, some contraction or expansion always 

takes place. Thus, dividing the applied force by the corresponding actual area of the specimen 

at the same instant gives the so called true stress. 

Percentage Elongation: 'd ': 

The ductility of a material in tension can be characterized by its elongation and by the 

reduction in area at the cross section where fracture occurs. 

It is the ratio of the extension in length of the specimen after fracture to its initial 

gauge length, expressed in percentage. 

 

lI = gauge length of specimen after fracture(or the distance between the gage marks at 

fracture) 

lg= gauge length before fracture(i.e. initial gauge length) 

For 50 mm gage length, steel may here a % elongation d of the order of 10% to 40%. 

Ductile and Brittle Materials: 
 

Based on this behaviour, the materials may be classified as ductile or brittle materials 

Ductile Materials: 
 

It we just examine the earlier tension curve one can notice that the extension of the materials 

over the plastic range is considerably in excess of that associated with elastic loading. The 

Capacity of materials to allow these large deformations or large extensions without failure is 

termed as ductility. The materials with high ductility are termed as ductile materials. 

Brittle Materials: 

A brittle material is one which exhibits a relatively small extensions or deformations to 

fracture, so that the partially plastic region of the tensile test graph is much reduced. 

This type of graph is shown by the cast iron or steels with high carbon contents or concrete. 
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Mechanical Properties of material: 
 

Elasticity: Property of material by virtue of which it can regain its shape after removal of 

external load 

Plasticity: Property of material by virtue of which, it will be in a state of permanent 

deformation even after removal of external load. 

Ductility: Property of material by virtue of which, the material can be drawn into wires. 

Hardness: Property of material by virtue of which the material will offer resistance to 
penetration or indentation 

 
 

Thermal stresses, Bars subjected to tension and Compression 

 
Compound bar: In certain application it is necessary to use a combination of elements 

or bars made from different materials, each material performing a different function. In over 

head electric cables or Transmission Lines for example it is often convenient to carry the 

current in a set of copper wires surrounding steel wires. The later being designed to support 

the weight of the cable over large spans. Such a combination of materials is generally termed 

compound bars. 

 
Compound bars subjected to Temp. Change : Ordinary materials expand when 

heated and contract when cooled, hence , an increase in temperature produce a positive 

thermal strain. Thermal strains usually are reversible in a sense that the member returns to its 

original shape when the temperature return to its original value. However, there here are 

some materials which do not behave in this manner. These metals differs from ordinary 

materials in a sence that the strains are related non linearly to temperature and some times are 

irreversible .when a material is subjected to a change in temp. is a length will change by an 

amount. 

 

 

 

 

= coefficient of linear expansion for the 

material L = original Length 

t = temp. change 

 
Thus an increase in temperature produces an increase in length and a decrease in 

temperature results in a decrease in length except in very special cases of materials with zero 

or negative coefficients of expansion which need not to be considered here. 

 
If however, the free expansion of the material is prevented by some external force, then 

a stress is set up in the material. They stress is equal in magnitude to that 

 
which would be produced in the bar by initially allowing the bar to its free length and then 

applying sufficient force to return the bar to its original length. 
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Consider now a compound bar constructed from two different materials 

rigidly joined together, for simplicity. 

 
Let us consider that the materials in this case are steel and brass. 

 

 

 
If we have both applied stresses and a temp. change, thermal strains may be added to 

those given by generalized hook's law equation –e.g. 

 

 

While the normal strains a body are affected by changes in temperatures, shear strains 

are not. Because if the temp. of any block or element changes, then its size changes not its 

shape therefore shear strains do not change. 

 
In general, the coefficients of expansion of the two materials forming the compound bar 

will be different so that as the temp. rises each material will attempt to expand by different 

amounts. Figure below shows the positions to which the 

 

 
individual materials will expand if they are completely free to expand (i.e not joined rigidly 

together as a compound bar). The extension of any Length L is given by L t 
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will therefore, seek to pull the steel up to its free length position and conversely, the lower 

coefficient of expansion martial (steel) will try to hold the brass back. In practice a 

compromised is reached, the compound bar extending to the position shown in fig (c), 

resulting in an effective compression of the brass from its free length position and an 

effective extension of steel from its free length position. 

In general, changes in lengths due to thermal strains may be calculated 
form equation t = Lt, provided that the members are able to expand or contract 
freely, 

a situation that exists in statically determinates structures. As a consequence no stresses are 

generated in a statically determinate structure when one or more members undergo a uniform 

temperature change. If in a structure (or a compound bar), the free expansion or contraction is 

not allowed then the member becomes s statically indeterminate, which is just being 

discussed as an example of the compound bar and thermal stresses would be generated. 

 
If the two materials are now rigidly joined as a compound bar and subjected to the same 

temp. rise, each materials will attempt to expand to its free length position but each will be 

affected by the movement of the other. The higher coefficient of expansion material (brass) 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

Stresses on oblique plane: Till now we have dealt with either pure normal direct stress or 

pure shear stress. In many instances, however both direct and shear stresses acts and the 

resultant stress across any section will be neither normal nor tangential to the plane. A plane 

stse of stress is a 2 dimensional stae of stress in a sense that the stress components in one 

direction are all zero i.e 

z = yz = zx = 0 

Examples of plane state of stress include plates and shells. Consider the general 
case of a bar under direct load F giving rise to a stress y vertically 
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The stress acting at a point is represented by the stresses acting on the faces of the element 

enclosing the point. The stresses change with the inclination of the planes passing through 

that point i.e. the stress on the faces of the element vary as the angular position of the element  

changes. Let the block be of unit depth now considering the equilibrium of forces on the 

triangle portion ABC. Resolving forces perpendicular to BC. 

Material subjected to pure shear: 

Consider the element shown to which shear stresses have been applied to the sides AB 

and DC 
 

Complementary shear stresses of equal value but of opposite effect are then set up on the 

sides AD and BC in order to prevent the rotation of the element. Since the applied and 

complementary shear stresses are of equal value on the x and y planes. Now consider the 

equilibrium of portion of PBC 

 

 

 

values of +< xy (tension) and << xy(compression) on plane at ± 450 to the applied shear and 

on these planes the tangential component < < is zero. 

Hence the system of pure shear stresses produces and equivalent direct stress system, one set 

compressive and one tensile each located at 450 to the original shear directions as depicted in 

the figure below: 
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Material subjected to two mutually perpendicular direct stresses: 

Now consider a rectangular element of unit depth, subjected to a system of two direct 
stresses both tensile, < x and < yacting right angles to each other. 

 

 
 

(3) 

Now resolving parallal to AC 

sq.AC.1= << xy..cos< .AB.1+<< xy.BC.sin< .1 

The – ve sign appears because this component is in the same direction as that of 

AC. Again converting the various quantities in terms of AC so that the AC cancels 

out from the 

two sides. 

Conclusions : 

The following conclusions may be drawn from equation (3) and (4) 

(i) The maximum direct stress would be equal to < x or < y which ever is the greater, 

when < 

= 00 or 900 

(ii) The maximum shear stress in the plane of the applied stresses occurs when << = 

450 
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Material subjected to combined direct and shear stresses: 

Now consider a complex stress system shown below, acting on an element of material. 

The stresses < x and < y may be compressive or tensile and may be the result of direct 

forces or as a result of bending.The shear stresses may be as shown or completely reversed 

and occur as a result of either shear force or torsion as shown in the figure below: 

As per the double subscript notation the shear stress on the face BC should be notified 

as < yx , however, we have already seen that for a pair of shear stresses there is a set of 

complementary shear 

 
stresses generated such that < yx = < xy 

By looking at this state of stress, it may be observed that this state of stress is 

combination of two different cases: 

(i) Material subjected to two mutually perpendicular direct stresses. In this case the 

various formula's derived are as follows. 

 
To get the required equations for the case under consideration, let us add the respective 

equations for the above two cases such that 

These are the equilibrium equations for stresses at a point. They do not depend on 

material proportions and are equally valid for elastic and inelastic behavior 

This eqn gives two values of 2< that differ by 1800 .Hence the planes on which 

maximum and minimum normal stresses accurate 900apart. 
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From the triangle it may be determined 

Substituting the values of cos2<< and sin2<< in equation (5) we get 
 

 
 

 

This shows that the values shear stress is zero on the principal planes. 

 
Once the maximum and minimum values of normal stresses occur on planes of zero 

shearing stress. The maximum and minimum normal stresses are called the principal stresses, 

and the planes on which they act are called principal plane the solution of equation ill yield 

two values of 2< separated by 1800 i.e. two values of < separated by 900 .Thus the two 

principal stresses occur on mutually perpendicular planes termed principal planes. 

Therefore the two – dimensional complex stress system can now be reduced to the 

equivalent system of principal stresses. 
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Let us recall that for the case of a material subjected to direct stresses the value of 

maximum shear stresses 
 
 

 

Therefore, it can be concluded that the equation (2) is a negative reciprocal of equation (1) 

hence the roots for the double angle of equation (2) are 900 away from the corresponding 

angle of equation (1). 

This means that the angles that angles that locate the plane of maximum or minimum 

shearing stresses form angles of 450 with the planes of principal stresses. 

Further, by making the triangle we get 
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Because of root the difference in sign convention arises from the point of view of 

locating the planes on which shear stress act. From physical point of view these sign have no 

meaning. 

The largest stress regard less of sign is always know as maximum shear stress. 

Principal plane inclination in terms of associated principal stress: 

 

 
We know that the equation 
yields two values of q i.e. the inclination of the two principal planes on which the 

principal stresses s1 and s2 act. It is uncertain, however, which stress acts on which plane 
unless equation. is used and observing which one of the 

two principal stresses is obtained. 

Alternatively we can also find the answer to this problem in the following manner 

 

 
Consider once again the equilibrium of a triangular block of material of unit depth, 

Assuming 

 

 

 

 

 

 

 
 

AC to be a principal plane on which principal stresses < p acts, and the shear stress is zero. 

Resolving the forces horizontally we get: 

< x .BC . 1 + < xy .AB . 1 = < p . cos< . AC dividing the above equation through by BC 

we get 
 

 
 

GRAPHICAL SOLUTION – MOHR'S STRESS CIRCLE 

The transformation equations for plane stress can be represented in a graphical form 

known as Mohr's circle. This grapical representation is very useful in depending the 

relationships between normal and shear stresses acting on any inclined plane at a point in a 

stresses body. 

To draw a Mohr's stress circle consider a complex stress system as shown in the figure 
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The above system represents a complete stress system for any condition of applied load in 

two dimensions 

The Mohr's stress circle is used to find out graphically the direct stress < and sheer 

stress<< on any plane inclined at < to the plane on which < x acts.The direction of < here is 

taken in anticlockwise direction from the BC. 

STEPS: 

In order to do achieve the desired objective we proceed in the following manner 

(i) Label the Block ABCD. 

(ii) Set up axes for the direct stress (as abscissa) and shear stress (as ordinate) 

(iii) Plot the stresses on two adjacent faces e.g. AB and BC, using the 

following sign convention. 

Direct stresses<< tensile positive; compressive, negative 

Shear stresses – tending to turn block clockwise, positive 

– tending to turn block counter clockwise, negative 

[ i.e shearing stresses are +ve when its movement about the centre of the 

element is clockwise ] 

 

 

 
This gives two points on the graph which may than be labeled as respectively to 

denote stresses on these planes. 

(iv) Join  . 

(v) The point P where this line cuts the s axis is than the centre of Mohr's 

stress circle and the line joining  is diameter. Therefore the circle can now be 

drawn. 

 
Now every point on the circle then represents a state of stress on some plane through C. 

 
Proof: 
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Consider any point Q on the circumference of the circle, such that PQ makes an angle 2<< 

with BC, and drop a perpendicular from Q to meet the s axis at N.Then OQ represents the 

resultant stress on the plane an angle < to BC. Here we have assumed that < x < < < y 

Now let us find out the coordinates of point Q. These are ON and QN. 

From the figure drawn earlier 

ON = OP + PN 

OP = OK + KP 

If we examine the equation (1) and (2), we see that this is the same equation which 

we have already derived analytically 

Thus the co-ordinates of Q are the normal and shear stresses on the plane inclined at 

< to BC in the original stress system. 

N.B: Since angle PQ is 2< on Mohr's circle and not < it becomes obvious that angles 

are doubled on Mohr's circle. This is the only difference, however, as They are measured in 

the same direction and from the same plane in both figures. 

Further points to be noted are 

 

(1) The direct stress is maximum when Q is at M and at this point obviously the sheer 
stress is zero, hence by definition OM is the length representing the maximum principal 
stresses < 1 and 2< 1 gives the angle of the plane < 1 from BC. Similar OL is the other 
principal stress and is represented by 
<2 

(2) The maximum shear stress is given by the highest point on the  circle  and is 

represented by the radius of the circle. 

This follows that since shear stresses and complimentary sheer stresses have the same 

value; therefore the centre of the circle will always lie on the s axis midway between < x and 

< y . [ since +< xy & << xy are shear stress & complimentary shear stress so they are same in 
magnitude but different in sign. ] 

(3) From the above point the maximum sheer stress i.e. the Radius of the Mohr's stress 

circle 

would be 

 

While the direct stress on the plane of maximum shear must be mid – may between < x 

and < y 

i.e 
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zero. 

(4) As already defined the principal planes are the planes on which the shear 

components are 

Therefore are conclude that on principal plane the sheer stress is zero. 

(5) 

(6) Since the resultant of two stress at 900 can be found from the parallogram of vectors 

as shown in the diagram.Thus, the resultant stress on the plane at q to BC is given by OQ on 

Mohr's Circle. 

 

 

 

 

(6) The graphical method of solution for a complex stress problems using Mohr's 

circle is a very powerful technique, since all the information relating to any plane within the 

stressed element is contained in the single construction. It thus, provides a convenient and 

rapid means of solution. Which is less prone to arithmetical errors and is highly 

recommended. 

 

 
 

Numericals: 

Let us discuss few representative problems dealing with complex state of stress to be 

solved either analytically or graphically. 

Q2: 

For a given loading conditions the state of stress in the wall of a cylinder is expressed as 

follows: 

(a) 85 MN/m2 tensile 

(b) 25 MN/m2 tensile at right angles to (a) 

(c) Shear stresses of 60 MN/m2 on the planes on which the stresses (a) and 

(b) act; the sheer couple acting on planes carrying the 25 MN/m2 stress is clockwise in effect. 

Calculate the principal stresses and the planes on which they act. What would be the 

effect on these results if owing to a change of loading (a) becomes compressive while 

stresses (b) and (c) remain unchanged 

Solution: 

The problem may be attempted both analytically as well as graphically. Let us first 

obtain the analytical solution 
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The principle stresses are given by the formula 

 

For finding out the planes on which the principle stresses act us the equation 
 

 

 

The solution of this 

equation 

they < 1 and < 2 giving < 1= 31071' & < 2= 121071' 

wil 

l 

yeil 

d 

tw 

o values < i.e 
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(b) In this case only the loading (a) is changed i.e. its direction had been changed. While 

the other stresses remains unchanged hence now the block diagram becomes. 

Again the principal stresses would be given by the equation. 
 

 

Thus, the two principle stresses acting on the two mutually perpendicular planes i.e 

principle planes may be depicted on the element as shown below: 

So this is the direction of one principle plane & the principle stresses acting on this would be
0 

< 
1 when is acting normal to this plane, now the direction of other principal plane would be 90 + 
< because the principal planes are the two mutually perpendicular plane, hence rotate the 
another plane 

< + 900 in the same direction to get the another plane, now complete the material element if < 

is negative that means we are measuring the angles in the opposite direction to the reference 
plane BC . 

Therefore the direction of other principal planes would be {<< + 90} since the angle << 

is always less in magnitude then 90 hence the quantity (<<< + 90 ) would be positive therefore 

the Inclination of other plane with reference plane would be positive therefore if just complete 

the Block. 
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It would appear as 
 

 

 

 

 

 

 

If we just want to measure the angles from the reference plane, than rotate this block 

through 1800 so as to have the following appearance. 

 

So whenever one of the angles comes negative to get the positive value, first 

Add 900 to the value and again add 900 as in this case < = < 23074' 

so < 1 = < 23074' + 900 = 66026' .Again adding 900 also gives the direction of other 

principle 

planes 

i.e < 2 = 66026' + 900 = 156026' 

This is how we can show the angular position of these planes clearly. 

GRAPHICAL SOLUTION: 

Mohr's Circle solution: The same solution can be obtained using the graphical solution 

i.e the Mohr's stress circle,for the first part, the block diagram bec 
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Construct the graphical construction as per the steps given earlier. 

 

Taking the measurements from the Mohr's stress circle, the various quantities computed 

are 

< 1 = 120 MN/m2 tensile 

< 2 = 10 MN/m2 compressive 

< 1 = 340 counter clockwise from BC 

< 2 = 340+ 90 = 1240 counter clockwise from BC 

Part Second : The required configuration i.e the block diagram for this case is 

shown along with the stress circle. By taking the measurements, the various quantites 

computed are given as 

< 1 = 56.5 MN/m2 tensile 

< 2 = 106 MN/m2 compressive 

< 1 = 66015' counter clockwise from BC 

<2 = 156015' counter clockwise from BC 
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Salient points of Mohr's stress circle: 

1. complementary shear stresses (on planes 900 apart on the circle) are equal in magnitude 

2. The principal planes are orthogonal: points L and M are 1800 apart on the circle (900 apart 
in material) 

3. There are no shear stresses on principal planes: point L and M lie on normal stress axis. 

4. The planes of maximum shear are 450 from the principal points D and E are 900 , measured 

round the circle from points L and M. 

5. The maximum shear stresses are equal in magnitude and given by points D and E 

6. The normal stresses on the planes of maximum shear stress are equal i.e. points D and E 

both have 

normal stress co-ordinate which is equal to the two principal stresses. 
 

 

know that the circle represents all possible states of normal and shear stress on any 

plane through a stresses point in a material. Further we have seen that the co-ordinates of the 

point „Q' are seen to be the same as those derived from equilibrium of the element. i.e. the  

normal and shear stress components on any plane passing through the point can be found 

using Mohr's circle. Worthy of note: 

1. The sides AB and BC of the element ABCD, which are 900 apart, are represented 

on the circle by and they are 1800 apart. 

2. It has been shown that Mohr's circle represents all possible states at a point. Thus, it can 
be seen at a point. Thus, it, can be seen that two planes LP and PM, 1800 apart on the 
diagram and therefore 900 apart in the material, on which shear stress < < is zero. These 
planes are termed as principal planes and normal stresses acting on them are known as 
principal stresses. 

Thus ,    < 1 = OL 

< 2 = OM 

3. The maximum shear stress in an element is given by the top and bottom points of the 
circle i.e by points J1 and J2 ,Thus the maximum shear stress would be equal to the 
radius of i.e. < max= 1/2(<< 1 <<< 2 ),the corresponding normal stress is obviously the 
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distance OP = 1/2 (<< x+ < y ) , Further it can also be seen that the planes on which the 
shear stress is maximum are situated 900 from the principal planes ( on circle ), and 450 
in the material. 

4. The minimum normal stress is just as important as the maximum. The algebraic 

minimum stress could have a magnitude greater than that of the maximum principal 

stress if the state of stress 

were such that the centre of the circle is to the left of 

orgin. i.e. if < 1 = 20 MN/m2 (say) 

< 2 = < 80 MN/m2 (say) 

Then < max
m = ( < 1 < < < 2 / 2 ) = 50 MN/m2 

If should be noted that the principal stresses are considered a maximum or minimum 

mathematically e.g. a compressive or negative stress is less than a positive stress, 

irrespective or numerical value. 

5. Since the stresses on perpendular faces of any element are given by the co- ordinates of 

two 

diametrically opposite points on the circle, thus, the sum of the two normal stresses for 

any and all orientations of the element is constant, i.e. Thus sum is an invariant for any 

particular state of stress. 

Sum of the two normal stress components acting on mutually perpendicular planes at a 

point in a state of plane stress is not affected by the orientation of these planes. 

This can be also understand from the circle Since AB and BC are diametrically opposite 

thus, 

 

 

 

 

what ever may be their orientation, they will always lie on the diametre or we can say that their 

sum won't change, it can also be seen from analytical relations 

 
We know 

on plane BC; < = 0 

< n1 = < x 

on plane AB; < = 2700 

< n2 = < y 

Thus < n1 + < n2= < x+ < y 

6. If < 1 = < 2, the Mohr's stress circle degenerates into a point and no shearing stresses 

are developed on xy plane. 

7. If < x+ < y= 0, then the center of Mohr's circle coincides with the origin of < < < 

< < 

co-ordinates. 
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SUMMARY 

 

 
Principal Plane: - It is a plane where shear force is zero is called principal plane. 

Principal Stress: - The normal stress on the principal plane is called   principal 

stress. Obliquity: - It is angle between the resultant stress and normal   stress. 

Mohr’s circle: - It is a graphical (circle) method to find the stresses and strains on a plane. 

Principal Plane and Stresses can be solved by 

1. Analytical Method – Solving horizontal and vertical stresses to find the normal 
stress and shear stress using trigonometry method. 

2. Graphical Method – Mohr‟s circle method 
 

Analytical Method: 

The equation is solved assuming ζx and ζy as tensile stresses as positive and η 
xy shear stress clockwise as positive to major principal stress. Simply change the sign 
if stresses are opposite. 

Graphical Method - Drawing Rules of Mohr’s Circle: 

1. Fix the origin (0,0) that is (x,y) at convenient place in the graph. 

2. X – axis to locate axial stress for both x and y directions. 

3. Y – axis to locate shear stress for clockwise and anti clockwise shear. 

4. Tensile stress is positive along x axis right of origin. 

5. Compressive stress is negative along x axis left of origin. 

6. Clockwise Shear stress is positive along y axis upward of origin. 

7. Anti clockwise shear stress is negative along y axis downward of origin.. 

8. When there is no shear force (η xy= 0) draw Mohr‟s circle from axial stresses. The 

centre of the Mohr‟s circle bisects axial stresses (ζx,0) and (ζy,0). 

9. When there is shear force draw Mohr‟s circle from axial stresses and shear stress. The 

centre of the Mohr‟s circle bisects the line between (ζx, ηxy) and (ζy, ηxy). 

10. Angle of inclination is to be drawn from point (ζy, ηxy) at centre of Mohr‟s to angle 
2θ in clockwise direction. 

11. Normal stress, and maximum and minimum principal stresses are taken from the 
origin along the x-axis of the Mohr‟s circle. 

12. Maximum shear stress is the radius of the Mohr‟s circle, and shear stresses are taken 
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along the y-axis of the Mohr‟s circle. 

13. The angle between the resultant stress and normal stress in angle of oblique. 
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UNIT 2 

Shear Force and Bending Moment 

 

Any sign convention can be followed but it should be uniform throughout the problem. We 

have chosen upward load or shear force as positive and downward load or shear force as 

negative. Similarly take clockwise moment as negative and anticlockwise moment as positive. 
 

Cantilever Beam: 

1. Simply add the load from right to find the shear force at various points. Upward SF 
minus downward SF will give SF at a point it may be +ve or –ve SF. 

2. Multiply the load with distance to find the moment at various points. Anti 
clockwise BM minus clockwise BM will BM at a point it may be +ve or –ve SF. 

3. Shear force maximum at the support. 

4. Moment maximum at the support and zero at free end. 
 

Simply supported Beam: 

1. Find the reactions at the supports. 

2. When taking moment to find the reactions consider even the pure moment in the 
beam, be careful with the direction of the moment. Then follow the SF and BM diagram 
procedure to complete the figure. 

3. Simply add the load from right to find the shear force at various points. Upward SF 
minus downward SF will give SF at a point it may be +ve or –ve SF. 

4. Multiply the load with distance to find the moment at various points. Anti 
clockwise BM minus clockwise BM will BM at a point it may be +ve or –ve SF. 

5. Moment is maximum where SF is zero for pure load only. 

6. To find the maximum moment, find section where SF is zero equate upward load 
to downward load to distance x from a support. Take that distance to find the maximum 
moment. 

7. Moments are zero at the supports. . 

Over hanging Beam: 

1. Find the reactions at the supports. 

2. When taking moment to find the reactions consider even the pure moment in the 
beam, be careful with the direction of the moment. Then follow the SF and BM diagram 
procedure to complete the figure. 

3. Simply add the load from right to find the shear force at various points. Upward SF 
minus downward SF will give SF at a point it may be +ve or –ve SF. 

4. Multiply the load with distance to find the moment at various points. Anti 
clockwise BM minus clockwise BM will BM at a point it may be +ve or –ve SF. 
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BM Diagram 

 

 

5. The moment changes the sign from positive to negative such point is known as 
point of contraflexure. To find the point of contraflexure find the section where MB is zero 
equate clockwise moments to anti clockwise moment to distance x from a support. 

6. Moments are zero at the supports where there is no overhanging, and at the over 
hanging end. 

 

Drawing Shear force diagram: 

1. Draw a reference line equal to length of the beam to scale. 

2. Move the line up if SF is pointing upward or move the line down if SF is pointing 
downward. 

3. When there is no load between loads draw horizontal line parallel to reference line. 

4. Point load is represented by vertical line. 

5. udl is represented by inclined line. 

6. Uniformly varying load is represented by parabola line. 

7. Ignore moment for shear force diagram. 
 

Drawing Bending Moment diagram: 

1. Draw a reference line equal to length of the beam to scale. 

2. Locate a point to find BM, clockwise is taken as negative and anti clockwise is 
taken as positive. 

3. Draw an inclined line to the point if the moment is due to point load only between 
sections. 

4. Draw a parabolic line to the point if the moment is due to udl load between sections. 

5. Draw a vertical line for pure moment on the beam, downward if it is clockwise 
moment and upward if it is anti clockwise moment. 

 

SF Diagram 
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ending Stress 

M = WL/4 Simply support bean point load at mid span 

M = wL
2
 

M = WL Cantilever beam load at distance L from the support 
2 

M = wL /2  Cantilever beam of udl throughout the span 

Stress is zero at centroid (NA) that is at distance y from the xx-axis and maximum at the 
top and bottom 

 

We know, 

M 

--------- = 

ζ E 

--------- = -------- 

I y R 

M – Bending moment or Moment may vary depending on the load 
example I– Moment of Inertia. 

ζ – Stress due to bending moment. To find ζ cthen y = ycand to find ζ tthen y = y t y - 

Centroid of the section about xx axis (NA). To find ζcthen y = ycand to find ζt then y = 
ytE – Modulus of Elasticity or Young‟s modulus. 

R- Radius of curvature due to bending. 

 
For symmetric section value of ζ c = ζ t because y c = y t example, rectangle, 

circular, and symmetric I section. That is N.A will be at mid point.The value yc = y from the 
bottom to NA for beam under compression and yt = y from the top to NA for beam under 
tension. To find the safe Load or moment find the value of ζc/ycand ζt/ytand take the least 
value for safe design. 

 

I = bd 

I = π(D3o/1–2Di)/64 for hollow pipe and solid rod y = Do/2 for solid pipe Di=  0 

 
 
Centroid (NA) of total section y = sum of (area of each section x centroid of each section from 
xx axis) divided by sum of (area of each section) Ref: figure 

 
a1y1+  a2y2+ ….. any n 

y = -------------------------------- 

a1+ a2 + ...... an 

Substitute the value y in the moment of inertia equation. 

Stress is caused due to Shear force or load. The shear load is right angle to the 
section. Shear Stress is zero at the top and bottom of the section and it is the maximum at 
centroid (NA) distance y from the xx-axis. 

 
FAy 

η= ----------- 

Ib 

η- Shear stress at a point   F – Shear load      A – Area of the section considered. 

y – Centroid distance of the section considered from the Neutral axis of the whole 
section. I– Inertia of the whole section b – Width of the section considered. 
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D/2 + d1 
 

 

 

 

 

 

 

 

 
 

 

xx 
 

 

 

 

 

Concept of Shear Force and Bending moment in beams: 

When the beam is loaded in some arbitrarily manner, the internal forces and moments are 

developed and the terms shear force and bending moments come into pictures which are 

helpful to analyze the beams further. Let us define these terms 

 
 

 
Fig 1 

Now let us consider the beam as shown in fig 1(a) which is supporting the loads P1, P2, P3 and 

is simply supported at two points creating the reactions R1 and R2 respectively. Now let us 

assume that the beam is to divided into or imagined to be cut into two portions at a section 

AA. Now let us assume that the resultant of loads and reactions to the left of AA is „F' 

D 

Yt 

d1 
d 

NA 

Yc 
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vertically upwards, and since the entire beam is to remain in equilibrium, thus the resultant of 

forces to the right of AA must also be F, acting downwards. This forces „F' is as a shear force. 

The shearing force at any x- section of a beam represents the tendency for the portion of the 

beam to one side of the section to slide or shear laterally relative to the other portion. 

Therefore, now we are in a position to define the shear force „F' to as follows: 

At any x-section of a beam, the shear force „F' is the algebraic sum of all the lateral 

components of the forces acting on either side of the x-section. 

Sign Convention for Shear Force: 

 
The usual sign conventions to be followed for the shear forces have been illustrated in figures 
2 and 3. 

 

 

Fig 2: Positive Shear Force 
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Fig 3: Negative Shear Force 

Bending Moment: 

 

 
Fig 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let us again consider the beam which is simply supported at the two prints, carrying loads P1, 

P2 and P3 and having the reactions R1 and R2 at the supports Fig 4. Now, let us imagine that 

the beam is cut into two potions at the x-section AA. In a similar manner, as done for the case 

of shear force, if we say that the resultant moment about the section AA of all the loads and 

reactions to the left of the x-section at AA is M in C.W direction, then moment of forces to 

the right of x-section AA must be „M' in 

C.C.W. Then „M' is called as the Bending moment and is abbreviated as B.M. Now one can 

define the bending moment to be simply as the algebraic sum of the moments about an x- 

section of all the forces acting on either side of the section 

Sign Conventions for the Bending Moment: 

For the bending moment, following sign conventions may be adopted as indicated in Fig 5 

and Fig 6. 

 

 
Fig 5: Positive Bending Moment 
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Some times, the terms „Sagging' and Hogging are generally used for the positive and negative 

bending moments respectively. 

Bending Moment and Shear Force Diagrams: 

The diagrams which illustrate the variations in B.M and S.F values along the length of the 

beam for any fixed loading conditions would be helpful to analyze the beam further. 

 
Thus, a shear force diagram is a graphical plot, which depicts how the internal shear force „F' 

varies along the length of beam. If x dentotes the length of the beam, then F is function x i.e. 

F(x). 

Similarly a bending moment diagram is a graphical plot which depicts how the internal 

bending moment „M' varies along the length of the beam. Again M is a function x i.e. M(x). 

Basic Relationship Between The Rate of Loading, Shear Force and Bending Moment: 

The construction of the shear force diagram and bending moment diagrams is greatly 

simplified if the relationship among load, shear force and bending moment is established. 

Let us consider a simply supported beam AB carrying a uniformly distributed load w/length. 

Let us imagine to cut a short slice of length dx cut out from this loaded beam at distance „x' 

from the origin „0'. 

 
 

 

 
Let us detach this portion of the beam and draw its free body diagram. 

 

 
 

The forces acting on the free body diagram of the detached portion of this loaded 

beam are the following 

• The shearing force F and F+ δF at the section x and x + δx respectively. 

• The bending moment at the sections x and x + δx be M and M + dM respectively. 
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• Force due to external loading, if „w' is the mean rate of loading per unit length then the 

total loading on this slice of length δx is w. δx, which is approximately acting through the 

centre „c'. If the loading is assumed to be uniformly distributed then it would pass exactly 

through the centre „c'. 

This small element must be in equilibrium under the action of these forces and 

couples. Now let us take the moments at the point „c'. Such that 
 

 
Conclusions: From the above relations,the following important conclusions may be drawn 

• From Equation (1), the area of the shear force diagram between any two points, from 

the basic calculus is the bending moment diagram 

 

• The slope of bending moment diagram is the shear force, thus 
 

 
Thus, if F=0; the slope of the bending moment diagram is zero and the bending 

moment is therefore constant.' 

 
• The maximum or minimum Bending moment occurs where 

The slope of the shear force diagram is equal to the magnitude of the intensity of the 

distributed loading at any position along the beam. The –ve sign is as a consequence of our 

particular choice of sign conventions 
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It may also be observed that a constant shear force produces a uniform change in the bending 

moment, resulting in straight line in the moment diagram. If no shear force exists along a 

certain portion of a beam, then it indicates that there is no change in moment takes place. It 

may also further observe that dm/dx= F therefore, from the fundamental theorem of calculus 

the maximum or minimum moment occurs where the shear is zero. In order to check the 

validity of the bending moment diagram, the terminal conditions for the moment must be 

satisfied. If the end is free or pinned, the computed sum must be equal to zero. If the end is 

built in, the moment computed by the summation must be equal to the one calculated initially 

for the reaction. These conditions must always be satisfied. 

Illustrative problems: 

In the following sections some illustrative problems have been discussed so as to 

illustrate the procedure for drawing the shear force and bending moment diagrams 

1. A cantilever of length carries a concentrated load ‘W' at its free end. 

Draw shear force and bending moment. 

Solution: 

At a section a distance x from free end consider the forces to the left, then F = -W (for all 

values of x) -ve sign means the shear force to the left of the x-section are in downward 

direction and therefore negative 

Taking moments about the section gives (obviously to the left of the section) 

M = -Wx (-ve sign means that the moment on the left hand side of the portion is in the 

anticlockwise direction and is therefore taken as –ve according to the sign convention) 

so that the maximum bending moment occurs at the fixed end i.e. M = -W l 

From equilibrium consideration, the fixing moment applied at the fixed end is Wl and the 

reaction is W. the shear force and bending moment are shown as, 

 
2. Simply supported beam subjected to a central load (i.e. load acting at the mid- way) 
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By symmetry the reactions at the two supports would be W/2 and W/2. now consider any 

section X-X from the left end then, the beam is under the action of following forces. 

.So the shear force at any X-section would be = W/2 [Which is constant upto x < l/2] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If we consider another section Y-Y which is beyond l/2 then 

 

for all values greater = l/2 

Hence S.F diagram can be plotted as, 

.For B.M diagram: 

If we just take the moments to the left of the cross-section, 
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Which when plotted will give a straight relation i.e. 

 

 

It may be observed that at the point of application of load there is an abrupt change in 

the shear force, at this point the B.M is maximum. 

3. A cantilever beam subjected to U.d.L, draw S.F and B.M diagram. 

 

Here the cantilever beam is subjected to a uniformly distributed load whose intensity is 

given w / length. 

Consider any cross-section XX which is at a distance of x from the free end. If we just 

take the resultant of all the forces on the left of the X-section, then 

S.Fxx = -Wx for all values of 
„x' 

-------------------- 
(1) 

S.Fxx = 0 

S.Fxx at x=1 = -Wl 

So if we just plot the equation No. (1), then it will give a straight line relation. Bending 

Moment at X-X is obtained by treating the load to the left of X-X as a concentrated load of 

the same value acting through the centre of gravity. 

Therefore, the bending moment at any cross-section X-X is 
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The above equation is a quadratic in x, when B.M is plotted against x this will 

produces a parabolic variation. 

The extreme values of this would be at x = 0 and x = l 
 

 
Hence S.F and B.M diagram can be plotted as follows: 

 
 

imply supported beam subjected to a uniformly distributed load [U.D.L]. 
 

 

 

 

The total load carried by the span would be 

= intensity of loading x length 

= w x l 

By symmetry the reactions at the end supports are each wl/2 

If x is the distance of the section considered from the left hand end of the beam. 
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Giving a straight relation, having a slope equal to the rate of loading or intensity of the 

loading. 

 

 
The bending moment at the section x is found by treating the distributed load as acting at its 

centre of gravity, which at a distance of x/2 from the section 

 

So the equation (2) when plotted against x gives rise to a parabolic curve and the shear force 

and bending moment can be drawn in the following way will appear as follows: 

S.F at any X-section X-X is 
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UNIT 3 

FLEXURAL AND SHEAR STRESES IN BEAMS 

 
Loading restrictions: 

As we are aware of the fact internal reactions developed on any cross-section of a beam may 

consists 

of a resultant normal force, a resultant shear force and a resultant couple. In order to ensure 

that the 

bending effects alone are investigated, we shall put a constraint on the loading such that the 

resultant 

normal and the resultant shear forces are zero on any cross-section perpendicular to the 

longitudinal 

axis of the member, 

That means F = 0 

since    or M = constant. 

Thus, the zero shear force means that the bending moment is constant or the bending is same 

at every cross-section of the beam. Such a situation may be visualized or envisaged when the 

beam or some portion of the beam, as been loaded only by pure couples at its ends. It must be 

recalled that the couples are assumed to be loaded in the plane of symmetry. 
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When a member is loaded in such a fashion it is said to be in pure bending. The examples of 

pure bending have been indicated in EX 1and EX 2 as shown below : 

 
 

When a beam is subjected to pure bending are loaded by the couples at the ends, certain 

cross-section gets deformed and we shall have to make out the conclusion that, 

1. Plane sections originally perpendicular to longitudinal axis of the beam remain plane and 

perpendicular to the longitudinal axis even after bending , i.e. the cross- section A'E', B'F' ( 

refer Fig 1(a) ) do not get warped or curved. 

2. In the deformed section, the planes of this cross-section have a common intersection i.e. 

any time originally parallel to the longitudinal axis of the beam becomes an arc of circle. 
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We know that when a beam is under bending the fibres at the top will be lengthened while at 

the bottom will be shortened provided the bending moment M acts at the ends. In between 

these there are some fibres which remain unchanged in length that is they are not strained, 

that is they do not carry any stress. The plane containing such fibres is called neutral surface. 

The line of intersection between the neutral surface and the transverse exploratory section is 

called the neutral axisNeutral axis (N A) . 

Bending Stresses in Beams or Derivation of Elastic Flexural formula : 

In order to compute the value of bending stresses developed in a loaded beam, let us consider 

the two cross-sections of a beamHE and GF , originally parallel as shown in fig 1(a).when 

the beam is to bend it is assumed that these sections remain parallel i.e.H'E' and G'F' , the 

final position of the sections, are still straight lines, they then subtend some angle < . 

Consider now fiber AB in the material, at adistance y from the N.A, when the beam bends 

this will stretch to A'B' 
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Since CD and C'D' are on the neutral axis and it is assumed that the Stress on the neutral axis 

zero. Therefore, there won't be any strain on the neutral a 

 

Consider any arbitrary a cross-section of beam, as shown above now the strain on a fibre at a 

distance „y' from the N.A, is given by the expression 

 

Now the term    is the property of the material and is called as a second moment of 

area of the 

cross-section and is denoted by a symbol I. 

Therefore 
 

 
This equation is known as the Bending Theory Equation.The above proof has 

involved the assumption of pure bending without any shear force being present. 

 
 

Therefore this termed as the pure bending equation. This equation gives distribution of 

stresses which are normal to cross-section i.e. in x-direction. 

Section Modulus: 

From simple bending theory equation, the maximum stress obtained in any cross- section is 

given as For any given allowable stress the maximum moment which can be accepted by a 

particular shape of 

 
cross-section is therefore 
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For ready comparison of the strength of various beam cross-section this relationship is some 

times written in the form 

 

 

 

 

 

 

 

 

 

 
Is termed as section modulu 

The higher value of Z for a particular cross-section, the higher the bending moment which it 

can withstand for a given maximum stress. 

Theorems to determine second moment of area: There are two theorems which are helpful 

to determine the value of second moment of area, which is required to be used while solving 

the simple bending theory equation. 

Second Moment of Area : 

Taking an analogy from the mass moment of inertia, the second moment of area is defined as 

the summation of areas times the distance squared from a fixed axis. (This property arised 

while we were driving bending theory equation). This is also known as the moment of inertia. 

An alternative name given to this is second moment of area, because the first moment being 

the sum of areas times their distance from a 

given axis and the second moment being the square of the distance or 

  . 

Consider any cross-section having small element of area d A then by the definitio 

Ix(Mass Moment of Inertia about x-axis) = and Iy(Mass Moment of Inertia 

about 

y-axis) =  

Now the moment of inertia about an axis through „O' and perpendicular to the plane of figure 

is called the polar moment of inertia. (The polar moment of inertia is also the area moment of 

inertia). i.e, 

 
J = polar moment of inertia 
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The relation (1) is known as the perpendicular axis theorem and may be stated as follows: 

The sum of the Moment of Inertia about any two axes in the plane is equal to the moment of 

inertia about an axis perpendicular to the plane, the three axes being concurrent, i.e, the three 

axes exist together. 

CIRCULAR SECTION : 

For a circular x-section, the polar moment of inertia may be computed in the following 
manner 

 
Consider any circular strip of thickness < r located at a radius 'r'. Than the area of the circular 
strip would be dA = 2< r. < r 
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Thus 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Parallel Axis Theorem: 

The moment of inertia about any axis is equal to the moment of inertia about a parallel axis 

through the centroid plus the area times the square of the distance between the axes. 

If „ZZ' is any axis in the plane of cross-section and „XX' is a parallel axis through the centroid 

G, of 

 

the cross-section, then 

 

Rectangular Section: 

For a rectangular x-section of the beam, the second moment of area may be computed as 

below : 
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Consider the rectangular beam cross-section as shown above and an element of area dA , 

thickness dy 

, breadth B located at a distance y from the neutral axis, which by symmetry passes through 

the centre of section. The second moment of area I as defined earlier would be 

Thus, for the rectangular section the second moment of area about the neutral axis i.e., an 

axis through the centre is given by 
 

 
Similarly, the second moment of area of the rectangular section about an axis through the 

lower edge of the section would be found using the same procedure but with integral limits of 

0 to D . 

Therefore 

These standards formuls prove very convenient in the determination of INA for build up 

sections which can be conveniently divided into rectangles. For instance if we just want to 

find out the Moment of Inertia of an I - section, then we can use the above relation. 
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Use of Flexure Formula: 

Illustrative Problems: 

An I - section girder, 200mm wide by 300 mm depth flange and web of thickness is 20 mm is 

used as 

simply supported beam for a span of 7 m. The girder carries a distributed load of 5 KN /m 

and a 

concentrated load of 20 KN at mid-span. 

Determine the 

(i). The second moment of area of the cross-section of the girder 

 

 

 
 

(ii). The maximum stress set up. 

Solution: 

The second moment of area of the cross-section can be determained as follows : 

For sections with symmetry about the neutral axis, use can be made of standard I value for a 

rectangle about an axis through centroid i.e. (bd 3 )/12. The section can thus be divided into 

convenient rectangles for each of which the neutral axis passes through the centroid. Example 

in the case enclosing the girder by a rectangle 

 
Computation of Bending Moment: 

In this case the loading of the beam is of two types 

(a) Uniformly distributed load 

(b) Concentrated Load 
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In order to obtain the maximum bending moment the technique will be to consider each 

loading on the beam separately and get the bending moment due to it as if no other forces 

acting on the structure and then superimpose the two results. 

Hence 
 

 
Shearing Stresses in Beams 

All the theory which has been discussed earlier, while we discussed the bending 

stresses in beams was for the 

case of pure bending i.e. constant bending moment acts 

\ 
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UNIT-4 

 

TORSION OF CIRCULAR SHAFTS 
 

 

Simple or Single shaft 
T ζ Gθ 

--- = ---- = -------- is general equation to stress and twist due to torsion. 

Ip r L 
 

T = Torque or Torsion or Angular Velocity obtained from 

power Ip = Polar moment of inertia is sum of Ixxand Iyy ζ 

= Shear stress in 

shaft r = radius of shaft 

L = Length of shaft θ=Angle of twist in radian. G or C= Modulus of rigidity 

Convert to radian 180 

P =Hollowshaft 

П(D 

 

D - External dia and d – internal dia 

Solid shaft d = 0 

Therefore, ПDIp =Strength of shaft 

 

 

Angle of twist is, 

 
Torsional rigidity is the product of G and Ip which is GIp. Zp is known as polar 

moduluswhich is ratio of Polar inertia over the distance from NA. 

 
Conditions: Torque is same in shafts T1= T2 

Twist θ= θ1+ θ2Shafts rotate in same direction 

Twist θ = θ 1- θ 2Shafts rotate in opposite 

direction 

Choose the least Torque between shafts for safe stress and angle of twist. 

Shafts in parallel: 

Conditions: Total Torque T = T1+ T2 

Twist is same in both shaft θ1= θ2 
The shafts may be of same material or different material, which is known as composite 

shaft. 

Ip = ----------------- Ip = I/2 only for circular section 
 32  
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Strain energy or Torsional resilience in shaft: 

It is the amount of energy stored when the shaft is in twisted position. 
Torsional energy U = Average Torque x angle of twist 

T x θ 

When U is divided by the volume of the shaft, is known as strain energy per unit volume. 

Shaft coupled: 

The shaft is joined together when the length is not sufficient this is known as 
coupling of shaft. It is done in two methods. 

1. Using bolts 

2. Using key 

Bolt method 

T can be obtained from shaft expression for bolt and keyed shaft. 
ζIp 2πNT 

T =   ------ or from Power expression P = ---------------- 

r 60 

T is torque in shaft which is transmitted to the coupled shaft through bolts or key. 
Therefore torque in bolts or key is equal to torque in shaft. 

T = no. of bolts x area of bolt x stress in bolt x radius of bolt circle 

Therefore T = n x Пdb 

 
Cylindrical Vessel with Hemispherical Ends: 

 
Let us now consider the vessel with hemispherical ends. The wall thickness of the cylindrical 

and hemispherical portion is different. While the internal diameter of both the portions is 

assumed to be equal 

 
Let the cylindrical vassal is subjected to an internal pressure p. 

 

 

 
For the Cylindrical Portion 
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For The Hemispherical Ends: 

 

 

 

 

 
Because of the symmetry of the sphere the stresses set up owing to internal pressure will be 

two mutually perpendicular hoops or circumferential stresses of equal values. Again the 

radial stresses are neglected in comparison to the hoop stresses as with this cylinder having 

thickness to diametre less than1:20. 

 
Consider the equilibrium of the half – sphere 

 
Force on half-sphere owing to internal pressure = pressure x projected Area 

 
= p. < d2/4 
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Fig – shown the (by way of dotted lines) the tendency, for the cylindrical portion and the 

spherical ends to expand by a different amount under the action of internal pressure. So 

owing to difference in stress, the two portions (i.e. cylindrical and spherical ends) expand by 

a different amount. This incompatibly of deformations causes a local bending and sheering 

stresses in the neighborhood of the joint. Since there must be physical continuity between the 

ends and the cylindrical portion, for this reason, properly curved ends must be used for 

pressure vessels. 

 
Thus equating the two strains in order that there shall be no distortion of the junction 

 
 

 

But for general steel works ν = 0.3, therefore, the thickness ratios becomes 

 

t2 / t1 = 0.7/1.7 

 
i.e. the thickness of the cylinder walls must be approximately 2.4 times that of the 

hemispheroid ends for no distortion of the junction to occur. 

 

SUMMARY OF THE RESULTS : Let us summaries the derived results 

 
(A) The stresses set up in the walls of a thin cylinder owing to an internal pressure p are : 

 
(i) Circumferential or loop stress 

 
H = pd/2t 

 

(ii) Longitudinal or axial stress 

 
L = pd/4t 

 

Where d is the internal diametre and t is the wall thickness of the cylinder. then 

Longitudinal strain L = 1 / E [ L− H] 
 

 

Hoop 

stain 
H = 1 / 

E [ 

H − ν L ] 
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(B) Change of internal volume of cylinder under pressure 
 
 

 

(C) Fro thin spheres circumferential or loop stress 
 
 

 

Thin rotating ring or cylinder 

 

Consider a thin ring or cylinder as shown in Fig below subjected to a radial internal pressure 

p caused by the centrifugal effect of its own mass when rotating. The centrifugal effect on a 

unit length of the circumference is 

 

p = m ω2 r 
 
 

 
 

Fig 19.1: Thin ring rotating with constant angular velocity 

 

Here the radial pressure „p' is acting per unit length and is caused by the 

centrifugal effect if its own mass when rotating. 

 
Thus considering the equilibrium of half the ring shown in the 

figure, 2F = p x 2r (assuming unit length), as 2r is the projected 

area F = pr 

 
 

Where F is the hoop tension set up owing to rotation. 

 
The cylinder wall is assumed to be so thin that the centrifugal effect can be 

assumed constant across the wall thickness. 

 
F = mass x acceleration = m ω2 r x r 

 
This tension is transmitted through the complete circumference and therefore 

is resisted by the complete cross – sectional area. 
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hoop stress = F/A = m ω2 r2 / A 

 
Where A is the cross – sectional area of the ring. 

 
Now with unit length assumed m/A is the mass of the material per unit volume, i.e. the 

density < . 

hoop stress H = ω2 r2 

 
Torsion of circular shafts 

 
Definition of Torsion: Consider a shaft rigidly clamped at one end and twisted at the other 

end by a torque T = F.d applied in a plane perpendicular to the axis of the bar such a shaft is 

said to be in torsion. 

 

 
 

Effects of Torsion: The effects of a torsional load applied to a bar are 

(i) To impart an angular displacement of one end cross – section with respect to the other end. 

(ii) To setup shear stresses on any cross section of the bar perpendicular to its axis. 

 

Assumption: 

 
(i) The materiel is homogenous i.e of uniform elastic properties exists throughout the 

material. 

(ii) The material is elastic, follows Hook's law, with shear stress proportional to shear 

strain. 

(iii) The stress does not exceed the elastic limit. 

(iv) The circular section remains circular 

(v) Cross section remain plane. 

(vi) Cross section rotate as if rigid i.e. every diameter rotates through the same angle. 

Consider now the solid circular shaft of radius R subjected to a torque T at one end, 

the other end being fixed Under the action of this torque a radial line at the free end 

of the shaft twists through an of distortion of the shaft i.e the shear strain. 

Since angle in radius = arc / 

Radius arc AB = R 
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From the definition of Modulus of rigidity or Modulus of elasticity in shear 

 
Stresses: Let us consider a small strip of radius r and thickness dr which is subjected to shear 

stress◻ 

 

 
 

The force set up on each element = stress x area 
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The total torque T on the section, will be the sum of all the contributions. 

r, because it varies with radius so writing down◻ 

 

Where 

T = applied external Torque, which is constant over Length L; 

J = Polar moment of Inertia 

[ D = Outside diameter ; d = inside 

 
 

diameter ] G = Modules of rigidity (or Modulus of elasticity in shear) 

Tensional Stiffness: The tensional stiffness k is defined as the torque per 
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TORSION OF HOLLOW SHAFTS: 

From the torsion of solid shafts of circular x – section , it is seen that only the material at 

the outer surface of the shaft can be stressed to the limit assigned as an 

allowable working stresses. All of the material within the shaft will work at a lower stress and 

is not being used to full capacity. Thus, in these cases where the weight reduction is 

important, it is advantageous to use hollow shafts. In discussing the torsion of hollow shafts 

the same assumptions will be made as in the case of a solid shaft. The general torsion 

equation as we have applied in the case of torsion of solid shaft will hold good 

Hence by examining the equation (1) and (2) it may be seen that the max
m in the case of 

hollow shaft is 6.6% larger than in the case of a solid shaft having the same outside diameter. 

Reduction in weight: 

Considering a solid and hollow shafts of the same length 'l' and density '   ' with di = 1/2 Do 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Hence the reduction in weight would be just 25%. 
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                                       UNIT 5 

 

Columns and Struts 

 

Introduction: 

Structural members which carry compressive loads may be divided into two broad categories 

depending on their relative lengths and cross-sectional dimensions. 

Columns: 

Short, thick members are generally termed columns and these usually fail by crushing when 

the yield stress of the material in compression is exceeded. 

Struts: 

Long, slender columns are generally termed as struts, they fail by buckling some time before 

the yield stress in compression is reached. The buckling occurs owing to one the following 

reasons. (a). the strut may not be perfectly straight initially. 

(b). the load may not be applied exactly along the axis of the Strut. 

(c). one part of the material may yield in compression more readily than others owing to 

some lack of uniformity in the material properties through out the strut. 

 
In all the problems considered so far we have assumed that the deformation to be both 

progressive with increasing load and simple in form i.e. we assumed that a member in simple 

tension or compression becomes progressively longer or shorter but remains straight. Under 

some circumstances however, our assumptions of progressive and simple deformation may 

no longer hold good and the member become unstable. The term strut and column are widely 

used, often interchangeably in the context of buckling of slender members.] 

At values of load below the buckling load a strut will be in stable equilibrium where the 

displacement caused by any lateral disturbance will be totally recovered when the disturbance 

is removed. At the buckling load the strut is said to be in a state of neutral equilibrium, and 

theoretically it should than be possible to gently deflect the strut into a simple sine wave 

provided that the amplitude of wave is kept small. 

Theoretically, it is possible for struts to achieve a condition of unstable equilibrium with 

loads exceeding the buckling load, any slight lateral disturbance then causing failure by 

buckling, this condition is never achieved in practice under static load conditions. Buckling 

occurs immediately at the point where the buckling load is reached, owing to the reasons 

stated earlier. 

The resistance of any member to bending is determined by its flexural rigidity EI and is The 

quantity I may be written as I = Ak2, 

Where I = area of moment of inertia A = 

area of the cross-section 

k = radius of gyration. 

The load per unit area which the member can withstand is therefore related to k. There will be 

two principal moments of inertia, if the least of these is taken then the ratio 
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Is called the slenderness ratio. It's numerical value indicates whether the member falls into 

the class 

 

of columns or struts. 

Euler's Theory : The struts which fail by buckling can be analyzed by Euler's 

theory. In the following sections, different cases of the struts have been analyzed. 

Case A: Strut with pinned ends: 

Consider an axially loaded strut, shown below, and is subjected to an axial load „P' this 

load „P' produces a deflection „y' at a distance „x' from one end. 

Assume that the ends are either pin jointed or rounded so that there is no moment at either 

end. 

Assumption: 
 

The strut is assumed to be initially straight, the end load being applied axially through 

centroid. 

 

 

 

In this equation „M' is not a function „x'. Therefore this equation can not be integrated directly 
as has been done in the case of deflection of beams by integration method. 

 

Though this equation is in „y' but we can't say at this stage where the deflection 

would be maximum or minimum. 

So the above differential equation can be arranged in the following 

 
 

form 

Let us define a operator D = 

d/dx 

(D2 + n2) y =0 where n2 = P/EI 
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This is a second order differential equation which has a solution of the form consisting of 

complimentary function and particular integral but for the time being we are interested in the 

complementary solution only[in this P.I = 0; since the R.H.S of Diff. equation = 0] Thus y = 

A cos (nx) + B sin (nx) Where A 

and B are some constants. 

 
Therefore 

In order to evaluate the constants A and B let us apply the boundary conditions, 

(i) at x = 0; y = 0 

(ii) at x = L ; y = 0 

Applying the first boundary condition yields A = 0. 

Applying the second boundary condition gives 

 
 

 

 

From the above relationship the least value of P which will cause the strut to buckle, and it is 
called the “ Euler Crippling Load ” Pefrom which w obtain. 

 

The interpretation of the above analysis is that for all the values of the load P, other than 

those which make sin nL = 0; the strut will remain perfectly straight since y = B sin nL = 0 

 
For the particular value of 
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Then we say that the strut is in a state of neutral equilibrium, and theoretically any deflection 

which it suffers will be maintained. This is subjected to the limitation that „L' remains 

sensibly constant and in practice slight increase in load at the critical value will cause the 

deflection to increase appreciably until the material fails by yielding. 

Further it should be noted that the deflection is not proportional to load, and this applies to all 

strut problems; like wise it will be found that the maximum stress is not proportional to load. 

The solution chosen of nL = < is just one particular solution; the solutions nL= 2< , 3< , 5< 

etc are equally valid mathematically and they do, infact, produce values of 

„Pe' which are equally valid for modes of buckling of strut different from that of a simple 

bow. Theoretically therefore, there are an infinite number of values of Pe , each 

corresponding with a different mode of buckling. 

The value selected above is so called the fundamental mode value and is the lowest critical 

load producing the single bow buckling condition. 

The solution nL = 2< produces buckling in two half – waves, 3< in three half-waves etc. 

 

If load is applied sufficiently quickly to the strut, then it is possible to pass through the 

fundamental mode and to achieve at least one of the other modes which are theoretically 

possible. In practical loading situations, however, this is rarely achieved since the high stress 

associated with the first critical condition generally ensures immediate collapse. 

struts and columns with other end conditions: Let us consider the struts and columns 

having different end conditions 
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Case b: One end fixed and the other free: 

 

 

 
writing down the value of bending moment at the point C 

 

 
Hence in operator form, the differential equation reduces to ( D2 + n2 ) y = n2a 

The solution of the above equation would consist of complementary solution and particular 

solution, therefore 

ygen = A cos(nx) + sin(nx) + P. I 

where 

P.I = the P.I is a particular value of y which satisfies the differential equation 

Hence yP.I = a Therefore the complete solution becomes Y = A 

cos(nx) + B sin(nx) + a 

Now imposing the boundary conditions to evaluate the constants A and B 

(i) at x = 0; y = 0 

This yields A = -a 

(ii) at x = 0; dy/dx = 0 

This yields B = 0 Hence 

y = < a cos(nx) + a 

Futher, at x = L; y = a 

Therefore a = - a cos(nx) + a 

or 0 = cos(nL) 



71  

 
 

Due to the fixed end supports bending moment would also appears at the supports, since 

this is the property of the support. 

Bending Moment at point C = M – P.y 

One end fixed, the other pinned 

In order to maintain the pin-joint on the horizontal axis of the unloaded strut, it is necessary 

in this case to introduce a vertical load F at the pin. The moment of F about the built in end 

then balances the fixing moment. 

With the origin at the built in end, the B,M at C is given as 
 

Now the fundamental mode of buckling in this case would be 

Case 3 

Strut with fixed ends: 
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Also when x = L ; y = 0 

Therefore 

nL Cos nL = Sin nL 

 

The lowest value of nL ( neglecting zero) which satisfies this condition and which therefore 

produces the fundamental buckling condition is nL = 4.49radian 
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Equivalent Strut Length: 

Having derived the results for the buckling load of a strut with pinned ends the Euler loads 

for other end conditions may all be written in the same form. 

 

Where L is the equivalent length of the strut and can be related to the actual length of the strut 

depending on the end conditions. 

The equivalent length is found to be the length of a simple bow(half sine wave) in each of the 

strut deflection curves shown. The buckling load for each end condition shown is then readily 

obtained. The use of equivalent length is not restricted to the Euler's theory and it will be used 

in other derivations later. 

The critical load for columns with other end conditions can be expressed in terms of the 

critical load for a hinged column, which is taken as a fundamental case. 

For case(c) see the figure, the column or strut has inflection points at quarter points of its 

unsupported length. Since the bending moment is zero at a point of inflection, the freebody 

diagram would indicates that the middle half of the fixed ended is equivalent to a hinged 

column having an effective length Le = L / 2. 

The four different cases which we have considered so far are: 

(a) Both ends pinned (c) One end fixed, other free 

(b) Both ends fixed (d) One end fixed and other pinned 

Limitations of Euler's Theory : 

In practice the ideal conditions are never [ i.e. the strut is initially straight and the 

end load being applied axially through centroid] reached. There is always some eccentricity 

and initial curvature present. These factors needs to be accommodated in the required 

formula's. 

It is realized that, due to the above mentioned imperfections the strut will suffer a 

deflection which increases with load and consequently a bending moment is introduced which 

causes failure before the Euler's load is reached. Infact failure is by stress rather than by 

buckling and the deviation from the Euler value is more marked as the slenderness-ratio l/k is 

reduced. For values of l/k < 120 approx, the error in applying the Euler theory is too great to 

allow of its use. The stress to cause buckling from the Euler formula for the pin ended strut is 

A plot of < e versus l / k ratio is shown by the curve ABC. 
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Allowing for the imperfections of loading and strut, actual values at failure must lie within 

and below line CBD. 

Other formulae have therefore been derived to attempt to obtain closer agreement between 

the actual failing load and the predicted value in this particular range of slenderness ratio 

i.e.l/k=40 to l/k=100. 

(a) Straight – line formulae : 

The permissible load is given by the formulae 
 
 

Where the value of index „n' depends on the material used and the 

end conditions. 

(b) Johnson parabolic formulae : The Johnson parabolic formulae is defined as 
 

   where the value of index „b' depends on the end conditions. 

(c) Rankine Gordon Formulae : 
 

 
Where Pe = Euler crippling load 

Pc = Crushing load or Yield point load in Compression 

PR = Actual load to cause failure or Rankine load 

Since the Rankine formulae is a combination of the Euler and crushing load for a strut. 

For a very short strut Pe is very large hence 1/ P ewould be large so that 1/ P ecan be 

neglected. 

 

 
Thus PR = Pc , for very large struts, P e is very small so 1/ P e would be large and 1/ P ccan be 

neglected ,hence PR = Pe 

The Rankine formulae is therefore valid for extreme values of 1/k.It is also found to be fairly 

accurate for the intermediate values in the range under consideration. Thus rewriting the 

formula in terms of stresses, we have 
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Where and the value of „a' is found by conducting experiments on various materials. 

Theoretically, but having a value normally found by experiment for various materials. This 

will take into account other types of end conditions. 
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