JHARSUGUDA ENGINEERING SCH	OOL,JHARSUGUDA
MECHANICAL ENGINE	ERIND DEPT
Course code : Th.2	Session: 2022-23
Programe: Di	Course Name: SOM
Semester: 3rd	Department: Mechanical Dept.
Branch: Mechanical	Section:M1/M2

Sl. No.	Unit	Hours	T 1 1 1 1
1.	1. 2.	Hours	Types of load stresses & strains (Avial and tangantial)
2.			Hooke's law, Young's modulus, bulk modulus, modulus of rigidity
3.			Poisson's ratio, derive the relation between three elastic constants
4.			Principle of super position
5.	1	10	stresses in composite section
6.			Problem on stresses in composite section
7.	_		Temperature stress, determine the temperature stress in composite bar
8.			Strain energy and resilience
9.			Stress due to gradually applied, suddenly applied and impact load
10.			Problem on Stress due to gradually applied, suddenly applied and impact load
11.			Definition of hoop and longitudinal stress, strain
12.			Derivation of hoop stress, longitudinal stress
13.	2		Derivation of hoop strain, longitudinal strain
14.			Derivation of volumetric strain
15.		8	Problem on hoop stress, longitudinal stress
16.			Problem on hoop strain, longitudinal strain and volumetric strain
17.	-		Computation of the change in length, diameter and volume
18.			Problem on Computation of the change in length, diameter and volume
19			Determination of normal stress, shear stress
20	-		Problem on Determination of normal stress, shear stress
20.	-	1	Determination of resultant stress on oblique plane
21.			

22.			Problem on resultant sitess on ound-
23.			() is includence
24.			Location of principal plane
25.			Computation of principal stress
26.	3	10	Problem on Location of principal plane and computation and principal stress
27.			Location of principal plane and computation of principal stres
			and Maximum snear stress using Monris circle
28.			principal stress and Maximum shear stress using Mohr's circle
29.			Types of beam
30.			Types of load
31.			Concepts of Shear force and bending moment
32.			Shear Force and Bending moment diagram
33			Problem on Shear Force and Bending moment diagram
34			Different types of beam: cantilever beam, simply supported
			beam and over hanging beam
35	4	10	salient features of Different types of heam
36		10	salient reactives of Different types of beam
37			Ream under point load and uniformly distributed load
38			Brahlem on Different types of beam under point load and
50.			problem on Different types of beam under point load and
20			Assumptions in the theory of hending
40			Assumptions in the theory of bending
40.			Bending equation
41.			Formulation of Bending equation
42.			Problem on Bending equation
43.	5	10	Noment of resistance
44.			Problem on Woment of resistance
45.			Section modulus
46.			Problem on Section modulus
47.			neutral axis
48.			Problem on neutral axis
49.	_		Define column
50.			Axial load, Eccentric load on column,
51.			stresses
52.	1		Problem on Axial load, Eccentric load on column
53.			Buckling load computation using Euler's formula in Columns
			with various end conditions
54.	1		Problem based on Euler's formula
55.	6		What is torsion
56.			Assumption of pure torsion
57.			torsion equation for solid circular shaft
58.		10	torsion equation for hollow circular shaft
59.			Comparison between solid and hollow shaft subjected to pur torsion
CO			Problem on torsion
60			

Signature of faculty

2

Signature of i/c HOD

.