

 Jharsuguda Engineering School

 Software Engineering
FOR DIPLOMA STUDENTS

Lecture Notes Prepared
 by

BARSHA RANI PATEL

IT Dept.

JHARSUGUDA ENGINEERING SCHOOL, JHARSUGUDA

Jharsuguda Engineering School Page 2

Course Contents

 Chapter - 1

 Introduction to Software Engineering 6-27

1.1 Relevance of software engineering
1.2 Software characteristics and applications
1.3 Emergence of software engineering.
1.4 Early computer programming high level language programming

control flow based design data flow oriented design data structure
oriented design object and component bases design

1.5 Software life cycle models
1.6 Classical water fall and iterative water fall models
1.7 Prototyping
1.8 Evolutionary model
1.9 Spiral model

 Chapter – 2

 Understanding Project Management 28-59

2.1 Project management concepts people, product, process and project
2.2 Project management
2.3 Project size estimation metrics line of control (LDC) and function

point
 metric (FP)
2.4 Difference among the project estimation techniques empirical
 estimation techniques, heuristic techniques, analytical estimation
 techniques
2.5 COCOMO models, Basic, Intermediate and complete
2.6 Effect of schedule change on lost
2.7 Jensen model for stating level estimation
2.8 Tools for scheduling
2.9 Use of work breakdown structure, activity networks, Gantt chart and
 PERT in scheduling
2.10 Organization structure
2.11 Team structure
2.12 Importance of risk identification risk assessment and risk
 containment with reference to risk management

Jharsuguda Engineering School Page 3

Chapter - 3

 Understanding the Need of Requirement Analysis 60-70

3.1 Need for requirement analysis
3.2 Steps in requirement dictation for software – initiating the process
 facilitated application specific techniques and quality function
 deployment.
3.3 Principles of analysis.
3.4 Software prototyping.
3.5 Prototyping approach.
3.6 Prototyping tools and methods.
3.7 Software requirement specification principle.
3.8 SRS Document.
3.9 Characteristics and organization of SRS document

Chapter - 4

Understanding the Principles and Methods of S\W Design 71-90

4.1 Importance of S/W Design
4.2 Design principles and Concepts

 4.3 Cohesion and coupling
4.4 Classification of cohesiveness
4.5 Classification of coupling
4.6 S/W design approaches
4.7 Structured analysis methodology
4.8 Use of DF diagram
4.9 List the symbols used in DFD
4.10 Construction of DFD
4.11 Limitations of DFD
4.12 Uses of structured of chart and structured design
4.13 Principles of transformation of DFD to structured chart
4.14 Transform analysis and transaction analysis
4.15 Object oriented concepts
4.16 Object oriented and function oriented design

Jharsuguda Engineering School Page 4

Chapter - 5

Understanding the Principles of User Interface Design 91-100

5.1 Rules for UDI
5.2 Interface design model
5.3 UID Process and models
5.4 Interface design activities defining interface objects, actions and the
 design issues.
5.5 Compare the various types of interface
5.6 Main aspects of Graphical UI, Text based interface

Chapter - 6

Understanding the Principles of Software Coding 101-123

6.1 Coding standards and guidelines.
6.2 Code walk through.
6.3 Code inspections and software documentation.
6.4 Distinguish between unit testing integration testing and system testing.
6.5 Unit testing.
6.6 Methods of black box testing.
6.7 Equivalence class partitioning and boundary value analysis.
6.8 Methodologies for white box testing.
6.9 Different white box methodologies statement coverage branch coverage,
 condition coverage, path coverage, data flow based testing and mutation
 testing.
6.10 Debugging approaches.
6.11 Debugging guidelines.
6.12 Need for integration testing.
6.13 Compare phased and incremental integration testing
6.14 System testing alphas beta and acceptance testing.
6.15 Need for stress testing and error seeding.
6.16 General issues associated with testing.

Jharsuguda Engineering School Page 5

Chapter-7

Understanding the Importance of S/W Reliability 124-134

7.1 Importance of software reliability
7.2 Distinguish between the different reliability metrics.
7.3 Reliability growth modeling.
7.4 Characteristics of quality software.
7.5 Evolution of software quality management system.
7.6 Importance, requirement and procedure to gain ISO 9000 certification for

software industry.
7.7 SEI capability maturity model.

7.8 Compare between ISO 9000 certification.

Chapter-8

Understanding the Computer Aided Software Engineering
(CASE) 135-143

8.1 Briefly explain CASE benefits of CASE.
8.2 Briefly explain the building blocks for CASE
8.3 CASE support in software life cycle
8.4 List the different CASE tools.

Model Question for Software Engineering 144-147

Jharsuguda Engineering School Page 6

Chapter - 1

Introduction to Software Engineering

Contents

1.1 Relevance of software engineering
1.2 Software characteristics and applications
1.3 Emergence of software engineering.
1.4 Early computer programming high level language programming
 control flow based design data flow oriented design data structure
 oriented design object and component bases design
1.5 Software life cycle models
1.6 Classical water fall and iterative water fall models
1.7 Prototyping
1.8 Evolutionary model
1.9 Spiral model

1.1 Relevance of Software Engineering

Software engineering is the field of computer science that deals with the

building of software systems which are so large or so complex that they are

build by a team or teams of engineers.

Parnas has defined software engineering as “multi-person construction of

multi-version software”.

According to Fritz Bauer, software engineering is “The establishment and use

of sound engineering principles in order to obtain economically software that

is reliable and works efficiently on real machines”.

Stephen Schach defined as “ A discipline whose aim is the production of

quality software, software that is delivered on time, within budget, and that

satisfies its requirements”.

Software has become critical to advancement in almost all areas of human

endeavour. The art of programming only is no longer sufficient to construct

Jharsuguda Engineering School Page 7

large programs. There are serious problems in the cost, timeliness,

maintenance and quality of many software products.

The foundation for software engineering lies in the good working knowledge

of computer science theory and practice. The theoretical background involves

knowing how and when to use data structures, algorithms and understanding

what problems can be solved and what cannot. The practical knowledge

includes through understanding of the workings of the hardware as well as

thorough knowledge of the available programming languages and tools.

Software engineering has the objective of solving these problems by

producing good quality, maintainable software, on time, within budget. To

achieve this objective, we have to focus in a disciplined manner on both the

quality of the product and on the process used to develop the product.

1.2 Software Characteristics and Applications

Software is a logical rather than a physical system element. Its characteristics

that make it different from other things human being build.

• Software is developed or engineered, it is not manufactured in the

classical sense which has quality problem.

• Software does not “wear out”, but it deteriorates due to change.

• Although the industry is moving toward component-based

construction, most software continues to be custom-built. Modern

reusable components encapsulate data and processing into software

parts to be reused by different programs. E.g. graphical user interface,

window, pull-down menus in library etc.

Software Applications

Software may be applied in any situation for which a pre-specified set of

procedural steps has been defined. Information content and determinacy are

Jharsuguda Engineering School Page 8

import factors in determining the nature of a software application. Contents

refer to the meaning and form of incoming and outgoing information.

Applications are:

 System software: System software is a collection of programs written

to service other programs. Examples of system software are compilers,

editors, file management utilities, operating system components,

drivers.

 Application software: Stand-alone programs for specific needs.

 Engineering / scientific software: Characterized by “number

crunching” algorithms. Such as automotive stress analysis, molecular

biology, orbital dynamics etc.

 Embedded software resides within a product or system.

 Product-line software focus on a limited marketplace to address mass

consumer market.

 Web based software, the web pages retrieved by a browser are

software that incorporates executable instructions and data. As web 2.0

emerges, more sophisticated computing environments is supported

integrated with remote database and business applications.

 AI software uses non-numerical algorithm to solve complex problem.

Examples are Robotics, expert system, pattern recognition, game

playing.

1.3 Emergence of Software Engineering

Software engineering techniques have evolved over many years which

resulted series of innovations and accumulation of experience about writing

good quality programs. Innovations and programming experiences which

have contributed to the development of software engineering are briefly

describe in Article 1.4.

Jharsuguda Engineering School Page 9

1.4 Early Computer Programming, High Level Language
Programming, Control Flow Based Design, Data Flow Oriented
Design, Data Structure Oriented Design, Object and
Component Bases Design

Early Computer Programming

Early commercial computers were very slow as compared to today's standard

computers. Even simple processing tasks took more computation time on

those computers. No wonder that programs at that time very small in size and

lacked sophistication. Those programs were usually written in assembly

languages. Program lengths were typically limited to about a few hundreds of

lines of monolithic assembly code. Every programmer writing the programs

in his own style.

High-Level Language Programming

Computers become faster with the introduction of the semiconductor

technology. With the availability of more powerful computers, it became

possible to solve larger and more complex problem. High Level languages

such as FORTRAN, ALGOL and COBOL were introduced. This

considerably reduced the effort required to develop software products and

helped programmers to write larger programs. However, the software

development style was limited to sizes of around a few thousands of lines of

source code.

Control Flow-Based Design

Programmers found it increasingly difficult not only to write cost effective

and correct programs, but also to understand and maintain programs written

by others. Thus particular attention is paid to the design of a program’s

control flow structure.

Jharsuguda Engineering School Page 10

A program's control flow structure indicates the sequence in which the

programs instructions are executed.

Data Structure-Oriented Design

Software engineers were now expected to develop larger more complicated

software products which often required writing in excess of several tens of

thousands of lines of source code. The control flow-based programs

development techniques could not be satisfactorily used to handle these

problems and therefore more effective program development techniques were

needed. Using data structure-oriented design techniques, first a program's

data structures are designed. In the next step, the program design is derived

from the data structure.

Object-Oriented Design

An object-Oriented design technique is an intuitively appealing approach,

where the natural objects occurring in a problem are first identified and then

the relationships the objects such as composition, reference, and inheritance

are determined. Each object essentially acts as a data hiding or data

abstraction entry. Object-oriented techniques have gained wide acceptance

because of their simplicity, code and design reuse scope they offer and

promise of lower development time, lower development cost more robust

code and easier maintenance.

1.5 Software Life Cycle Models

The goal of software engineering is to provide models and processes that lead

to the production of well-documented maintainable software.

A life cycle model prescribes the different activities that need to be carried

Jharsuguda Engineering School Page 11

out to develop a software product and the sequencing of these activities.

 A software life cycle is the series of identifiable stages that a software

product undergoes during its lifetime. It also captures the order in which

these activities are to be undertaken.

A software life cycle model is a descriptive and diagrammatic representation

of the software life cycle.

The various phases of software life cycle or Software Development Life

Cycle (SDLC) are:

 Preliminary Investigation

 Software Analysis

 Software Design

 Software Testing

 Software Maintenance

A software life cycle model is referred to as software process model.

1.6 Classical Waterfall Model and Iterative Waterfall Model

 This model is called as linear sequential model. This model suggests a

systematic approach to software development.

The project development is divided into sequence of well-defined phases. It

can be applied for long-term project and well understood product

requirement.

The classical waterfall model breaks down the life cycle into an intuitive set

of phases. Different phases of this model are:

• Feasibility study

• Requirements analysis and specification

• Design

• Coding and unit testing

Jharsuguda Engineering School Page 12

• Integration and system testing

• Maintenance

The phases starting from the feasibility study to the integration and system

testing phases are known as the development phases. All these activities are

performed in a set of sequence without skip or repeat. None of the activities

can be revised once closed and the results are passed to the next step for use.

Feasibility Study

The main of the feasibility study is to determine whether it would be

financially, technically and operationally feasible to develop the product. The

feasibility study activity involves the analysis of the problem and collection

of all relevant information relating to the product such as the different data

items which would be input to the system, the processing required to be

Feasibility
Study

Design

Coding and
Unit Testing

Maintenance

Requirement
Analysis and
Specification

Integration
and System
Testing

Fig. 1.1 Classical Waterfall Model

Jharsuguda Engineering School Page 13

carried out on these data, the output data required to be produced by the

system.

Technical Feasibility

Can the work for the project be done with current equipment, existing

software technology and available personnel?

Economic Feasibility

Are there sufficient benefits in creating the system to make the costs

acceptable?

Operational Feasibility

Will the system be used if it is developed and implemented?

These phases capture the important requirements of the customer, also

formulate all the different ways in which the problem can be solved are

identified.

Requirement Analysis and Specifications

The goal of this phase is to understand the exact requirements of the

customer regarding the product to be developed and to document them

properly.

This phase consists of two distinct activities:

• Requirements gathering and analysis.

• Requirements specification.

Requirements Gathering and Analysis

This activity consists of first gathering the requirements and then analyzing

Jharsuguda Engineering School Page 14

the gathered requirements.

The goal of the requirements gathering activity is to collect all relevant

information regarding the product to be developed from the customer with a

view to clearly understand the customer requirements.

Once the requirements have been gathered, the analysis activity is taken up.

Requirements Specification

The customer requirements identified during the requirement gathering and

analysis activity are organized into a software requirement specification

(SRS) document. The requirements describe the “what” of a system, not the

“how”. This document written in a natural language contains a description of

what the system will do without describing how it will be done. The most

important contents of this document are the functional requirements, the non-

functional requirements and the goal of implementation. Each function can

be characterized by the input data, the processing required on the input data

and the output data to be produced. The non-functional requirements identify

the performance requirements, the required standards to be followed etc. The

SRS document may act as a contract between the development team and

customer.

Design

The goal of this phase is to transform the requirements specified in the SRS

document into a structure that is suitable for implementation in some

programming language. Two distinctly different design approaches are being

used at present. These are:

• Traditional design approach

• Object-oriented design approach

Jharsuguda Engineering School Page 15

 Traditional Design Approach

 The traditional design technique is based on the data flow oriented design

 approach.

The design phase consists of two activities: first a structured analysis of the

requirements specification is carried out, second structured design activity.

Structured analysis involves preparing a detailed analysis of the different

functions to be supported by the system and identification of the data flow

among the functions. Structured design consists of two main activities:

architectural design (also called high level design) and detailed design (also

called low level design).

High level design involves decomposing the system into modules,

representing the interfaces and the invocation relationships among the

modules. Detailed design deals with data structures and algorithm of the

modules.

Object-Oriented Design Approach

In this technique various objects that occur in the problem domain and the

solution domain are identified and the different relationships that exist among

these objects are identified.

Coding and Unit Testing

The purpose of the coding and unit testing phase of software development is

to translate the software design into source code. During testing the major

activities are centred on the examination and modification of the code.

Initially small units are tested in isolation from rest of the software product.

Unit testing also involves a precise definition of the test cases, testing criteria

and management of test cases.

Jharsuguda Engineering School Page 16

Integration and System Testing

During the integration and system testing phase the different modules are

integrated in a planned manner. Integration of various modules are normally

carried out incrementally over a number of steps. During each integration

step previously planned modules are added to the partially integration system

and the resultant system is tested. Finally, after all the modules have

been successfully integrated and tested system testing is carried out.

The goal of system testing is to ensure that the developed system confirms to

its requirements laid out in the SRS document. System testing usually

consists of three different kinds of testing activities:

• α –testing: α testing is the system testing performed by the

development team.

• β –testing: This is the system testing performed by a friendly set of

customers.

• Acceptance testing: This is the system testing performed by the

customer himself after the product delivery to determine whether to

accept the delivered product or to reject it.

System testing is normally carried out in a planned manner according to a

system test plan document. The results of information and system testing are

documented in the form of a test report.

Maintenance

Software maintenance is a very broad activity that includes error correction,

enhancement of capabilities and optimization. The purpose of this phase is to

preserve the value of the software over time. Maintenance involves

performing the following activities:

Jharsuguda Engineering School Page 17

• Corrective Maintenance

 This type of maintenance involves correcting error that were not

 discovered during the product development phase.

• Perfective Maintenance

This type of maintenance involves improving the implementation of

 the system and enhancing the functionalities of the system according

 to the customer’s requirements.

• Adaptive Maintenance

Adaptive maintenance is usually required for reporting the softer to

work in a new environment.

Iterative Waterfall Model

The classical waterfall model is an idealistic one since it assumes that no

development error is ever committed by the engineers during any of the life

cycle phases. However in practical development environment, the engineers

do commit a large number of errors in different phases of the life cycle. The

source of the defects can be wrong assumptions, use of in appropriate

technology, communication gap among the project developers etc. These

defects usually get detected much later in the life cycle. Suppose a defect is

detected at testing phase the engineers need to go back to the phase where the

defect had occurred and correct the work done during that phase and the

subsequent phases to correct the defect and its effect on the later phases.

In any practical software development work it is not possible to strictly

follow the classical waterfall model.

Feedback paths are needed in the classical waterfall model from every phase

to its preceding phases.

Jharsuguda Engineering School Page 18

It may not always be possible to detect all error in the same phase in which

they occur. The feedback paths allow for correction of the errors committed

during a phase, as and when these are detected. If during testing a design

error is identified then the feedback path allows the design to reworked and

the changes to be reflected in the design documents. However observe that

there is no feedback path to the feasibility stage. This means that the

feasibility study error can not be corrected.

Though errors are inevitable in almost every phase of development, it is

desirable to detect these errors in the same phase in which they occur. This

can reduce the effort required for correcting bugs. The principle of detecting

errors as close to there points of introduction as possible is known as phase

containment of errors. This is an important software engineering principle.

Feasibility
Study

Requirement analysis
and specification

Design

Coding and
unit testing

Integration and
system testing

Maintenance

Fig. 1.2 Iterative waterfall Model

Jharsuguda Engineering School Page 19

1.7 Prototyping Model

Prototyping is an attractive idea for complicated and large systems for which

there is no manual process or existing system to help to determine the

requirements.

The main principle of prototyping model is that the project is built quickly to

demonstrate the customer who can give more inputs and feedback. This

model will be chosen

 When the customer defines a set of general objectives for software but

does not provide detailed input, processing or output requirements.

 Developer is unsure about the efficiency of an algorithm or the new

technology is applied.

A prototype usually exhibits limited functional capabilities, low reliability

and inefficient performance compared to the actual software. A developed

prototype can help engineers to critically examine the technical issues

associated with product development.

Jharsuguda Engineering School Page 20

The development of the prototype starts when the preliminary version of the

requirements specification document has been developed. A quick design is

carried out and the prototype is built. The developed prototype is submitted

to the customer for his evaluation. Based on the experience, they provide

Fig. 1.3 Prototyping Model of Software Development

Requirements
gathering

Quick
design

Refine
requirements
incorporating
customer
suggestions

Build
Prototype

Customer evaluation
of prototype

Design

Implement

Test

Maintain

Jharsuguda Engineering School Page 21

feedback to the developers regarding the prototype: what is correct, what

needs to be modified, what is missing, what is not needed etc. Based on the

customer feedback the prototype is modified and then the users and the

clients are again allowed to use the system. This cycle of obtaining customer

feedback and modifying the prototype continues till the customer approves

the prototype.

After the finalization of software requirement and specification (SRS)

document, the prototype is discarded and actual system is then developed

using the iterative waterfall approach.

Prototyping is often not used, because that development costs may become

large. However in some situations, the cost of software development without

prototyping may be more than with prototyping. Prototype model is well

suited for projects where requirements are hard to determine. This model

requires extensive participation and involvement of the customer, which is

not always possible.

1.8 Evolutionary Model

This life cycle model is also referred as the successive versions model and

the incremental model. In this life cycle model the software is first broken

down into several modules or functional units which can be incrementally

constructed and delivered.

Jharsuguda Engineering School Page 22

 Fig. 1.4 Evolutionary model of software development

 A, B, C are modules of a software product that are incrementally developed

and delivered.

The development team first develops the core modules of the system. That is
basic requirements are addressed but many supplementary features remain
undelivered. The initial product is refined into increasing levels of capability
by adding new functionalities in successive versions. Each evolutionary
version may be developed using an interactive waterfall model of
development.

Jharsuguda Engineering School Page 23

 Fig. 1.5 Evolutionary Model of Software Development

Each successive version of the product is fully functioning software capable

of performing more useful work than the previous version. In this model the

user gets a chance to experiment with partially developed software much

before the complete version of the system is released. Therefore the

evolutionary model helps to accurately elicit user requirements during the

delivery of the different versions of the software and the change requests

Rough requirements specification

Identify the core and other parts to be
developed incrementally

Develop the core part using an iterative
waterfall model

Collect customer feedback and modify
requirements

Develop the next identified features
using an iterative waterfall model

Maintenance

Jharsuguda Engineering School Page 24

after delivery of the complete software are minimized.

The evolutionary model is used when the customer prefers to receive the

products in increments rather than waiting for the full product to be

developed and delivered. The evolutionary model is very popular for object

oriented software development project.

The main disadvantage of the successive versions model is that for most

practical problems it is difficult to divide the problem into several functional

units which can be incrementally implemented and delivered. The

evolutionary model is normally useful for only very large products.

1.9 Spiral Model

The spiral model also known as the spiral life cycle model is a systems

development life cycle model used in information technology. This model of

development combines the features of the prototyping model, the waterfall

model and other models. The diagrammatic representation of this model

appears like a spiral with many loops.

Jharsuguda Engineering School Page 25

 Fig:-Spiral Model

 The exact number of loops in the spiral is not fixed. Each loop of the
spiral represents a phase of the software process.
 The innermost loop might be concerned with feasibility study that is
the new system requirements are

The exact number of loops in the spiral is not fixed. Each loop of the spiral
represents a phase of the software process. The innermost loop might be
concerned with feasibility study that is the new system requirements are
defined in details. Next a preliminary design is created for the new system
and so on. This model is much more flexible compared to the other models

Exact number of phases through which the product is developed in this

model is not fixed. The number of phases varies from one project to another.

Each phase in this model is split into four sectors or quadrants:

• Planning: Identifies the objectives of the phase and the alternative

solutions possible for the phase and constraints.

• Risk analysis: Analyze alternatives and attempts to identify and

resolve the risks involved.

1.Idetermine objectives
and identify alternative
solutions

2. Identify and
resolve risks

4. Review and
plan for next
phase

3. Develop
next level of
the product

Fig. 1.6 Spiral Model of Software Development

Jharsuguda Engineering School Page 26

• Development: Product development and testing product.

• Assessment: Customer evaluation.

During the first phase planning is performed, risks are analyzed, prototypes

are built and customers evaluate the prototype. During the second phase a

second prototype is evolved by a fourfold procedure: evaluating the first

prototype in terms of its strengths, weaknesses and risks, defining the

requirements of the second prototype, constructing and testing the second

prototype. The existing prototype is evaluated in the same manner as was the

previous prototype and if necessary another prototype is developed. After

several iterations along the spiral, all risks are resolved and the software is

ready for development. At this point, a waterfall model of software

development is adopted.

The radius of the spiral at any point represents the cost incurred in the project

till then and the angular dimension represents the progress, made in the

current phase.

In the spiral model of development, the project team must decide how exactly

to structure the project into phases. The most distinguishing feature of this

model is its ability to handle risks. The spiral model uses prototyping as a

risk reduction mechanism and also retains the systematic step-wise approach

of the waterfall model.

Spiral Model Strengths

 Provides early indication of risks, without much cost.

 Critical high-risk functions are developed first.

 Early and frequent feedback from users.

 Cumulative costs assessed frequently.

Jharsuguda Engineering School Page 27

Spiral Model Weaknesses

 The model is complex.

 Risk assessment expertise is required.

 May be hard to define objectives.

 Spiral may continue indefinitely.

 Time spent planning, resetting objectives, doing risk analysis and

prototyping may be excessive.

Jharsuguda Engineering School Page 28

Chapter - 2
Understanding Project Management

Contents

2.1 Project management concepts people, product, process and project
2.2 Project management
2.3 Project size estimation metrics, line of control (LOC) and function

point
 metric (FP)
2.4 Difference between the project estimation techniques: empirical

estimation techniques, heuristic techniques, analytical estimation
techniques

2.5 COCOMO models, Basic, Intermediate and complete
2.6 Effect of schedule change on lost
2.7 Jensen model for stating level estimation
2.8 Tools for scheduling
2.9 Use of work breakdown structure, activity networks, Gantt chart and
 PERT in scheduling
2.10 Organization structure
2.11 Team structure

 2.12 Importance of risk identification risk assessment and risk
 containment with reference to risk management

2.1 Project Management Concepts

 The main goal of software project management is to enable a group of

software engineers to work efficiently towards successful completion of the

project. The management of software development is dependent on four

factors:

• The People

• The Product

• The Process

• The Project

Jharsuguda Engineering School Page 29

Effective software project management focuses on these items in this order:

o The people

• Deals with the cultivation of motivated, highly skilled people.

• Consists of the stack holders, the team leaders, and the software

 team.

o The Product

• Product objectives and scope should be established before a

 project can be planned.

o The Process

• The software process provides the framework from which a

comprehensive plan for software development can be established.

o The Project

• Planning and controlling a software project is done for one

primary reason, it is the only known way to manage complexity.

• In a 1998 survey, 26% of software projects failed outright, 46%

experienced cost and schedule overruns.

Dependency
order

1

2

3

4

People

Product

Process

 Project

Fig. 2.1 Factors of Management Dependency

Jharsuguda Engineering School Page 30

2.2 Project Management

There are many software engineers involved in the development of a

software product. The primary job of the project manager is to ensure that the

project is completed within budget and on schedule.

Job Responsibilities of a Software Project Manager

• Software managers are responsible for planning and scheduling project

development. Manager must decide what objectives are to be achieved,

what resources are required to achieve the objectives, how and when

the resources are to be acquired and how the goals are to be achieved.

• Software managers takes responsibility for project proposal writing,

project cost estimation, project staffing, project monitoring and

control, software configuration management, risk management,

interfacing with clients, managerial report writing and presentation.

• Software managers monitor progress to check that the development is

on time and within budget.

Skills Necessary for Software Project Management

• Good qualitative judgment and decision-making capabilities

• Good knowledge of latest software project

management techniques such as cost estimation, risk management,

configuration management.

• Good communication skill and previous experience in managing

 similar projects.

Jharsuguda Engineering School Page 31

 Project Planning

Software managers are responsible for planning and scheduling project

development. They monitor progress to check that the development is on

time and within budget. The first component of software engineering project

management is effective planning of the development of the software. Project

planning consists of the following activities:

 Estimate the size of the project.

 Estimate the cost and duration of the project. Cost and duration

estimation is usually based on the size of the project.

 Estimate how much effort would be required?

 Staff organization and staffing plans.

 Scheduling man power and other resources.

 The amount of computing resources (e.g. workstations, personal

computers and database software). Resource requirements are

estimated on the basis of cost and development time.

 Risk identification, analysis.

Size estimation is the first activity. The size is the key parameter for the

estimation of other activities. Other components of project planning are

estimation of effort, cost, resources and project duration.

Size
Estimation

Effort
Estimation

Cost
Estimation

Duration
Estimation

Project
Staffing

Scheduling

Fig. 2.2 Precedence Ordering among Planning Activities

Jharsuguda Engineering School Page 32

Sliding Window Technique

In this technique starting with an initial plan, the project is planned more

accurately in successive development stages. At the start of a project, project

manager have incomplete knowledge about the details of the project. The

information gradually improves as the project progress through different

phases. After the completion of every phase, the project manager can plan

each subsequent phase more accurately and with increasing levels of

confidence.

2.3 Project Size Estimation Metrics, Line Of Control (LOC)

 and Function Point Metric (FP)

The size of a project is obviously not the number of bytes that the source

code occupies. The project size is a measure of the problem complexity

in terms of the effort and time required to develop the product.

Two metrics are widely used to estimate size:

• Lines of Code (LOC)

• Function Point (FP)

 Lines Of Code (LOC)

LOC can be defined as the number of delivered lines of code in software

excluding the comments and blank lines. LOC depends on the programming

language chosen for the project. The exact number of the lines of code can

only be determined after the project is complete since less information about

the project is available at the early stage of development.

In order to estimate the LOC count at the beginning of a project, project

managers usually divide the problem into modules and each modules into sub

modules and a so on until the sizes of the different leaf level modules can be

approximately predicted.

Jharsuguda Engineering School Page 33

Disadvantages:

• LOC is language dependent. A line of assembler is not the same as a

line of COBOL.

• LOC measure correlates poorly with the quality and efficiency of the

code. A larger code size does not necessary imply better quality or

higher efficiency.

• LOC metrics penalizes use of higher level programming languages,

code reuse etc.

• It is very difficult to accurately estimate LOC in the final product from

the problem specification. The LOC count can be accurately computed

only after the code has been fully developed.

Function Point Metric

♦ Function Points measure software size by quantifying the functionality

provided to the user based solely on logical design and functional

specifications

♦ Function point analysis is a method of quantifying the size and

complexity of a software system in terms of the functions that the

system delivers to the user

♦ It is independent of the computer language, development methodology,

technology or capability of the project team used to develop the

application.

♦ Function point analysis is designed to measure business applications

(not scientific applications) .

♦ Function points are independent of the language, tools, or

methodologies used for implementation

♦ Function points can be estimated early in analysis and design

♦ Since function points are based on the system user’s external view of

Jharsuguda Engineering School Page 34

the system, non-technical users of the software system have a better

understanding of what function points are measuring.

 Objectives of Function Point Counting

♦ Measure functionality that the user requests and receives

♦ Measure software development and maintenance independently of

technology used for implementation

Steps of Function Point Counting

♦ Determine the type of function point count

♦ Identify the counting scope and application boundary

♦ Determine the Unadjusted Function Point Count

♦ Count Data Functions

♦ Count Transactional Functions

♦ Determine the Value Adjustment Factor

♦ Calculate the Adjusted Function Point Count

Function point metric estimates the size of a software product directly from

the problem specification.

The different parameters are:

• Number Of Inputs:

Each data item input by the user is counted.

• Number Of Outputs:

The outputs refers to reports printed, screen outputs, error messages

produced etc.

• Number Of Inquiries:

It is the number of distinct interactive queries which can be made by the

users.

• Number Of Files:

Each logical file is counted. A logical file means groups of logically

related data. Thus logical files can be data structures or physical files.

Jharsuguda Engineering School Page 35

• Number Of Interfaces:

Here the interfaces which are used to exchange information with other

systems. Examples of interfaces are data files on tapes, disks,

communication links with other systems etc.

 Function Point (FP) is estimated using the formula:

 FP = UFP (Unadjusted Function Point) * TCF (Technical Complexity

 Factor)

 UFP = (Number of inputs) * 4 + (Number of outputs) * 5 + (Number of

 inquiries) * 4 + (Number of files) * 10 + Number of interfaces) * 10

 TCF = DI (Degree of Influence) * 0.01

The unadjusted function point count (UFP) reflects the specific countable

functionality provided to the user by the project or application.

Example- Once the unadjusted function point (UFP) is computed, the

technical complexity factor (TCF) is computed next. The TCF refines the

UFP measure by considering fourteen other factors such as high

transaction rates, throughput and response time requirements etc. Each of

these 14 factors is assigned a value from 0 (not present or no influence) to

6 (strong influence). The resulting numbers are summed, yielding the total

degree of influence (DI). Now, the TCF is computed as (0.65+0.01*DI).

As DI can vary from 0 to 70, the TCF can vary from 0.65 to 1.35.

 Finally FP = UFP *TCF

Feature Point Metric

Feature point metric incorporates an extra parameter in to algorithm

complexity. This parameter ensures that the computed size using the feature

point metric reflects the fact that the more the complexity of a function, the

greater the effort required to develop it and therefore its size should be larger

compared to simpler functions.

Jharsuguda Engineering School Page 36

Project Estimation Techniques

The estimation of various project parameters is a basic project planning

activity. The project parameters that are estimated include:

• Project size(i.e. size estimation)

• Project duration

• Effort required to develop the software

 There are three broad categories of estimation techniques:

• Empirical estimation techniques

• Heuristic techniques

• Analytical estimation techniques

Empirical Estimation Techniques

Empirical estimation techniques are based on making an educated guess of

the project parameters. While using this technique, prior experience with the

development of similar products is useful.

Heuristic Techniques

Heuristic techniques assume that the relationships among the different project

parameters can be modelled using suitable mathematical expressions. Once

the basic (independent) parameters are known, the other (dependent)

parameters can be easily determined by substituting the value of the basic

parameters in the mathematical expression. Different heuristic estimation

models can be divided into two categories:

• Single variable model

• Multivariable model

 A single variable estimation model takes the following form:

 Estimated parameter = c1* ed1

Where e is a characteristics of the software, c1 and d1 are constants.

Jharsuguda Engineering School Page 37

A multivariable cost estimation model takes the following form:

 Estimated Resource = c1 * e1
d1 + c2 * e2

d2 +

Where e1, e2 ...are the basic characteristics of the software.

c1, c2, d1, d2 ...are constants.

Analytical Estimation Techniques

Analytical estimation techniques derive the required results starting with

certain basic assumptions regarding the project. This technique does have a

scientific basis.

Halstead’s Software Science an Analytical Estimation Techniques

Halstead’s software science is an analytical technique to measure size,

development effort, and development cost of software products. Halstead

used a few primitive program parameters to develop the expressions for the

overall program length, potential minimum volume, language level, and

development time.

For a given program, let:

♦ η1 be the number of unique operators used in the program

♦ η2 be the number of unique operands used in the program

♦ N1 be the total number of operators used in the program

♦ N2 be the total number of operands used in the program.

There is no general agreement among researchers on what is the most

meaningful way to define the operators and operands for different

programming languages.

For instance, assignment, arithmetic, and logical operators are usually

counted as operators. A pair of parentheses, as well as a block begin and

block end pair, are considered as single operators.

The constructs if......then.......else.....endif and a while......do are treated as

single operators. A sequence operator ‘;’ is treated as a single operator.

Jharsuguda Engineering School Page 38

Operators and Operands for the ANSI C Language

The following is a suggested list of operators for the ANSI C language:

 ({ . , -> * + - ~ ! ++ -- * / % + - << >> < > <= >= != == & ^ | && \\ = *=

/= %= -= <<= >>= &= ^= \= : ? { ; CASE DEFAULT IF ELSE SWITCH

WHILE DO FOR GOTO CONTINUE BREAK RETURN and a function

name in a function call.

Length and Vocabulary

The length of a program as defined by Halstead, quantifies the total usage of

all operations and operands in the program. Thus, length N = N1 + N2

The program vocabulary is the number of unique operators and operands

used in the program. Thus, program vocabulary η = η1 + η2

Program Volume

The length of a program depends on the choice of the operators and operands

used.

V = N log2 η

The program volume V is the minimum number of bits needed to encode the

program. In fact, to represent η different identifiers uniquely, we need at least

log2 η bits. We need N log 2 η bits to store a program of length N. Therefore,

the volume V represents the size of the program by approximately

compensating for the effect of the programming language used.

Effort and Time

The effort required to develop a program can be obtained by dividing the

program volume by the level of the programming language used to develop

the code. Thus, effort E = V / L, where E is the number of mental

discriminations required to implement the program and also the effort

required to read and understand the program.

Jharsuguda Engineering School Page 39

Actual Length Estimation

Even though the length of a program can be found by calculation the total

number of operators and operands in a program.

N=η1 log2 η1 + η2 log2 η2

Empirical Estimation Techniques

Cost estimation is a part of the planning stage of any engineering activity.

For any new software project, it is necessary to know how much it will cost

to develop and how much development time it will take. Cost in a project is

due to the requirements for software, hardware and human resources.

Hardware resources such as computer time, terminal time and memory

required for the project, software resources include the tools and compilers

needed during development.

Cost estimates can be made either top-down or bottom-up. Top-down

estimation first focuses on system level costs such as the computing

resources and personal required to develop the system, quality assurance,

system integration, training. Bottom-up cost estimation first estimates the

cost to develop each module or subsystem. Those costs are combined to

arrive at an overall estimate. Two popular empirical estimation techniques

are:

 Expert Judgment Technique

 The most widely used cost estimation technique is the expert judgment,

which is an inherently top-down estimation technique. In this approach an

expert makes an educated guess of the problem size after analyzing the

problem thoroughly. The expert estimates the cost of the different modules or

subsystems and then combines them to arrive at the overall estimate.

Jharsuguda Engineering School Page 40

However, this technique is subject to human errors and individual bias. An

expert making an estimate may not have experience and knowledge of all

aspects of a project. The advantage of expert judgment is the estimation made

by a group of experts. Estimation by a group of experts minimizes factors

such as lack of familiarity with a particular aspect of a project, personal bias.

 Delphi Cost Estimation

Delphi cost estimation approach tries to overcome some of the short comings

of the expert judgment approach. Delphi estimation is carried out by a team

consisting of a group of experts and a coordinator. The Delphi technique can

be adapted to software cost estimation in the following manner:

• A coordinator provides each estimator with the software requirement

specification (SRS) document and a form for recording a cost estimate.

• Estimators study the definition and complete their estimates

anonymously and submit it to the coordinator. They may ask questions

to the coordinator, but they do not discuss their estimates with one

another.

• The coordinator prepares and distributes a summary of the estimator’s

responses and includes any unusual rationales noted by the estimators.

• Based on this summary, the estimators re-estimate. This process is

iterated for several rounds. No group discussion is allowed during the

entire process.

2.5 COCOMO: A Heuristic Estimation Technique

COCOMO was proposed by Boehm. Boehm postulated that any software

development project can be classified into one of the following three

categories based on the development complexity: organic, semidetached, and

embedded.

Jharsuguda Engineering School Page 41

• Organic: In the organic mode the project deals with developing a

well-understood application program. The size of the development

team is reasonably small, and the team members are experienced in

developing similar types of projects.

• Semidetached: In the semidetached mode the development team

consists of a mixture of experienced and inexperienced staff. Team

members may have limited experience on related systems but may be

unfamiliar with some aspects of the system being developed.

• Embedded: In the embedded mode of software development, the

project has tight constraints, which might be related to the target

processor and its interface with the associated hardware.

According to Boehm, software cost estimation should be done through three

stages: basic COCOMO, intermediate COCOMO, and complete COCOMO.

Basic COCOMO

The basic COCOMO model gives an approximate estimate of the project

parameters. The basic COCOMO estimation model is given by the following

expressions:

 Effort = a1 × (KLOC)a2 PM

 Tdev = b1 × (Effort) b2 Months

Where

(i) KLOC is the estimated size of the software product expressed in Kilo

Lines of Code,

(ii) a1, a2, b1, b2 are constants for each category of software products,

(iii) Tdev is the estimated time to develop the software, expressed in months,

(iv) Effort is the total effort required to develop the software product,

expressed in person months (PMs).

Jharsuguda Engineering School Page 42

Intermediate COCOMO

The basic COCOMO model allowed for a quick and rough estimate, but it

resulted in a lack of accuracy. Basic model provides single-variable (software

size) static estimation based on the type of the software. A host of the other

project parameters besides the product size affect the effort required to

develop the product as well as the development time.

Intermediate COCOMO provides subjective estimations based on the size of

the software and a set of other parameters known as cost directives. This

model makes computations on the basis of 15 cost drivers based on the

various attributes of software development. Cost drivers are used to adjust

the nominal cost of a project to the actual project environment, hence

increasing the accuracy of the estimate.

The cost drivers are grouped into four categories:

• Product attributes

• Computer attributes

• Personnel attributes

• Development environment

Product

The characteristics of the product data considered include the inherent

complexity of the product, reliability requirements of the product, database

size etc.

Computer

The characteristics of the computer that are considered include the execution

speed required, storage space required etc.

Personnel

The attributes of development personnel that are considered include the

experience level of personnel, programming capability, analysis capability etc.

Jharsuguda Engineering School Page 43

Development Environment

The development environment attributes capture the development facilities

available to the developers.

Complete COCOMO / Detailed COCOMO

Basic and intermediate COCOMO model considers a software product as a

single homogeneous entity. Most large system are made up of several smaller

subsystem. These subsystems may have widely different characteristics.

Some subsystem may be considered organic type, some embedded and some

semidetached. Software development is executed in different phases and

hence the estimation of efforts and schedule of deliveries should be carried

out phase wise. Detailed COCOMO provides estimated phase-wise efforts

and duration of phase of development.

Detailed COCOMO classifies the organic, semidetached, and embedded

project further into small, intermediate, medium and large-size projects based

on the size of the software measured in KLOC. Based on this classification,

the percentage of efforts and schedule have been allocated for different phase

of the project, viz. software planning, requirement analysis, system

designing, detailed designing, coding, unit testing, integration and system

testing. Total effort is estimated separately. This approach reduces the margin

of error in the final estimate.

2.6 Effect of Schedule Change on Cost

Only few number of engineers are needed at the beginning of the project to

carry out planning and specification tasks. As the project progress and more

detailed work is required, the number of engineers reaches a peak.

Jharsuguda Engineering School Page 44

By using the Putnam’s proposed expression for L,

 K = (L3) / (Ck)
3 (td)

4

 Or

 K = C / (td)
4 (Since C = (L3) / (Ck)

3) is a constant)

• Where K is the total effort expended (in PM) in the product

development and L is the product size in KLOC.

• td is the time required to develop the software.

• Ck is the state of technology constant and reflects constraints that

impede the progress of the programmer.

From the expression, it can be observed that when the schedule of the project

is compressed, the required effort increases.

The Putnam estimation model works reasonably well for very large systems,

but seriously overestimates the effort on medium and small systems.

2.7 Jensen Model for Staffing Level Estimation

Jensen model is very similar to Putnam model. However, it attempts to soften

the effect of schedule compression on effort to make it applicable to smaller

and medium sized projects. Jensen proposed the equation:

 L=C te td K
1/2

Where C te is the effective technology constant, t d is the time to develop the

software, and K is the effort needed to develop the software.

2.8 Tools for Scheduling

Scheduling the project tasks is an important project planning activity.

Scheduling involves deciding which tasks would be taken up when. In order

to schedule the project activities, a software project manager needs to do the

following.

Jharsuguda Engineering School Page 45

 i)Identify all the tasks necessary to complete the project.

ii) Break down larger tasks into a logical set of small activates which would

 be assigned to different engineers.

iii) Create the work break down structure and to find the dependency among

 the activates. Dependency among the different activates determines the

 order in which the different activates would be carried out.

 iv) Establish the most likely estimates for the time durations necessary to

 complete the activities.

 v) Resources are allocated to each activity. Resource allocation is typically

 done using a Gantt chart.

vi) Plan the starting and ending dates for various activities. The end of each

 activity is called a milestone.

 Vii) Determine the critical path.

 A critical path is the chain of activities that determine the duration of the

project.

The first step in scheduling a software project involves identifying all the

tasks necessary to complete the project. Next, the large tasks are broken

down into logical set of small activities which would be assigned to different

engineers.

After the project manager has broken down the task and created the work

breakdown structure, he has to find the dependency among the activities.

Dependency among the different activities determines the order in which the

different activities would be carried out. If an activity A requires the results

of another activity B, then activity A must be scheduled after activity B. The

task dependencies define a partial ordering among tasks.

Jharsuguda Engineering School Page 46

Once the activity network representation has been worked out, resources are

allocated to each activity. Resource allocation is typically done using a Gantt

chart. After resource allocation is done, a Project Evaluation and Review

Technique chart representation is developed. The PERT chart representation

is suitable for program monitoring and control.

2.9 Use of Work Breakdown Structure, Activity Networks,
Gantt Chart and PERT in Scheduling

Work Breakdown Structure

Most project control techniques are based on breaking down the goal of the

project into several intermediate goals. Each intermediate goal can be broken

down further. This process can be repeated until each goal is small enough to

be well understood.

Work breakdown structure (WBS) is used to decompose a given task set

recursively into small activities. In this technique, one builds a tree whose

root is labelled by the problem name. Each node of the tree can be broken

down into smaller components that are designated the children of the node.

This “work breakdown” can be repeated until each leaf node in the tree is

small enough to allow the manager to estimate its size, difficulty and

resource requirements.

The goal of a work breakdown structure is to identify all the activities that a

project must undertake.

Jharsuguda Engineering School Page 47

 Fig. 2.3 Work breakdown structure of an MIS problem

The task is broken down into a large number of small activities; these

activities can be distributed to a large number of engineers. Thus it becomes

possible to develop the product faster. Therefore, to be able to complete a

project in the least amount of time the manager needs to break large tasks

into smaller subtasks, expecting to find more parallelism. In scheduling the

manager decide the order in which to do these tasks.

Two general scheduling techniques are Gantt Charts and PERT Charts.

Activity Networks and Critical Path Method

Work Breakdown Structure representation of a project is transformed into an

activity network by representing the activities identified in work breakdown

structure along with their interdependencies. An activity network shows the

different activities making up a project, their estimated durations and

interdependencies.

MIS
Application

Requirements
Specification

Design Code Test Document

Data base
part

Data base
part

Graphical
user

interface
part

Graphical
user

interface
part

Jharsuguda Engineering School Page 48

 Fig. 2.4 Activity Network representation of the MIS problem

Managers can estimate the time duration for the different tasks in several

ways. A path from the start node to the finish node containing only critical

tasks is called a critical path.

• Critical Path Method

• From the activity network Fig.2.4 representation, the following

analysis can be made:

• The minimum time (MT) to complete the project is the maximum of

all paths from start to finish.

• The earliest start (ES) time of a task is the maximum of all paths from

the start to this task.

• The latest start (LS) time is the difference between MT and the

maximum of all paths from this task to the finish.

• The earliest finish time (EF) of a task is the sum of the earliest start

time of the task and the duration of the task.

Finish

Requirements
specification
15

Integration
and test 120

Code database
part 120

Code GUI
part 45

Design
database part
45

Design GUI
part 30

Write user
manual 60

Jharsuguda Engineering School Page 49

• The latest finish (LF) time of a task can be obtained by subtracting

maximum of all paths from this task to finish from MT.

• The slack time (ST) is LS – EF and equivalently can be written as LF –

EF. The slack time is the total time for which a task may be delayed

before it would affect the finish time of the project. The slack time

indicates the flexibility in starting and completion of tasks.

• A critical task is one with a zero slack time.

• A path from the node to the finish node containing only critical tasks is

called a critical path.

• The above parameters for different tasks for the MIS problem (Fig.2.4)

are shown in the following table.

Task ES EF LS LF ST

Specification Part 0 15 0 15 0

Design Database Part 15 60 15 60 0

Design GUI Part 15 45 90 120 75

Code Database Part 60 165 60 165 0

Code GUI Part 45 90 120 165 75

Integrate and Test 165 285 165 285 0

White User Manual 15 75 225 285 210

The critical paths are all the paths whose duration equals MT. The critical

path in Fig.2.4 is shown with thick arrow lines.

Gantt Chart

Gantt charts are a project control technique that can be used for several

purposes including scheduling, budgeting and resource planning. Gantt

Charts are mainly used to allocate resources to activities. A Gantt chart is a

Jharsuguda Engineering School Page 50

special type of bar chart where each bar represents an activity. The bars are

drawn against a time line. The length of each bar is proportional to the

duration of the time planned for the corresponding activity.

 Fig. 2.5 Gantt Chart Representation of the MIS Problem

In the Gantt Chart the bar consists of a write part and a shaded part. The

shaded part of the bar shows the length of time each task is estimated to take.

The white part shows the slack time, that is the latest time by which a task

must be finished.

PERT (Project Evaluation and Review Technique) Charts

PERT controls time and cost during the project and also facilities finding the

right balance between completing a project on time and cost during the

project and also facilitates finding the right balance between completing a

project on time and completing it within a budget.

Jharsuguda Engineering School Page 51

A PERT Chart is a network of boxes (or circles) and arrows. The boxes

represent activities and the arrows are used to show the dependencies of

activities on one another. The activity at the head of an arrow cannot start

until the activity at the tail of the arrow is finished. The boxes in a PERT

Chart can be decorated with starting and ending dates for activities. PERT

Chart is more useful for monitoring the timing progress of activities.

 Fig.2.6 PERT Chart representation of the MIS problem

PERT Chart shows the interrelationship among the tasks in the project and

identifies critical path of the project.

2.10 Organisation Structure

There are essentially two broad ways in which a software development

organization can be structured: function format and project format. In the

project format, the development staff are divided based on the project for

which they work. In the functional format, the development staff are divided

based on the functional group to which they belong to . The different projects

bellow engineers from functional groups for specific phases of the projects

and return them to their functional group upon completion of the phase.

Preparation of
software
requirement
specification

Design

Database
design

GUI
design

Code
database
part

Code GUI
part

Integration
and testing

Finish

Jharsuguda Engineering School Page 52

In the functional format, different teams of programmers perform different

phases of a project.

For example, one team might do the requirements specification, another do

the design, and so on. The partially completed product passes from one team

to another as the product evolves. Therefore, the functional format requires

considerable communication among the different teams because the work of

one team must be clearly understood be team must be clearly understood by

the subsequent teams working on the project.

In the project format, a set of engineers are assigned to the project at the start

of the project and they remain with the project till the completion of the

project. Thus, the same team carries out all the life cycle activities.

Obviously, the functional format requires more communication among teams

than the project format, because one team must understand the work done by

the previous teams. The main advantages of a functional organization are:

Top Management

Project
Team 1

Project
Team n

Fig. Project Organization

Top Management

Requirements

Design
Coding
Testing
Project
Management

Maintenance

Project
Team 1

Project
Team n

Fig.2.7 Functional
organization

Functional Group

Jharsuguda Engineering School Page 53

 Ease of staffing

 Production of good quality documents

 Job specialization

 Efficient handling of the problems associated with manpower turnover

The functional organisation allows engineers to become specialists in their

particular roles, e.g. requirements analysis, design, coding, testing,

maintenance etc. the functional organisation also provides an efficient

solution to the staffing problem. A project organisation structure forces the

manager to take in almost a constant number of engineers for the entire

duration of the project.

 2.11 Team Structure

Team structures address the issue of organization of the individual teams.

Three format team structures are:

 Chief programmer

 Democratic

 Mixed team organization

Chief Programmer Team

In this organization, a senior engineer provides the technical leadership and is

designated as the chief programmer. The chief programmer partitions the task

into small activities and assigns them to the team members.

Jharsuguda Engineering School Page 54

 (Software engineers)
 Fig. 2.8 Chief programmer team structure

The chief programmer provides an authority. The chief programmer team

leads to lower team morale, since the team members work under the constant

supervision of the chief programmer. This also inhibits their original

thinking.

The chief programmer team is probably the most efficient way of completing

and small projects. The chief programmer team structure works well when

the task is within the intellectual grasp of a single individual.

Democratic Team

The democratic team structure does not enforce any formal team hierarchy.

Typically a manager provides the administrative leadership. At different

times, different members of the group provide technical leadership.

Project Manager

Jharsuguda Engineering School Page 55

 Software engineer

 Communication path

 Fig.2.9 Democratic team structure

The democratic organization leads to higher morale and job satisfaction. The

democratic team structure is appropriate for less understood problems, since

a group of engineers can invent better solutions than a single individual as in

a chief programmer team. A democratic team structure is suitable for projects

requiring less than five or six engineers and for research-oriented projects.

The democratic team organization encourages egoless programming as

programmers can share and review one another’s work.

Mixed Control Team Organization

The mixed team organization draws upon the ideas from both the democratic

organization and the chief programmer organization. This team organization

incorporates both hierarchical reporting and democratic set-up.

Jharsuguda Engineering School Page 56

The mixed control team organization is suitable for large team sizes. The

democratic arrangement at the senior engineers level is used to decompose

the problem into small parts. Each democratic set-up at the programmer level

attempts to find solution to a single part. This team attempts to find solution

to a single part. This team structure is extremely popular and is being used in

many software development companies.

Project manager

Reporting

Senior engineers

Software
engineers

Communication

Fig.2.10 Mixed team structure

Jharsuguda Engineering School Page 57

2.12 Importance of Risk Identification, Risk Assessment and

 Risk Containment with reference to Risk Management

Risk management is an emerging area that aims to address the problem of

identifying and managing the risk associated with a software project. Risk in

a project is the possibility that the defined goals are not met. The basic

motivation of having risk management is to avoid heavy looses.

Risk is defined as an exposure to the chance of injury or loss. That is risk

implies that there is possibility that something negative may happen. In the

content of software project, negative implies that there is an adverse effect on

cost, quantity or schedule. Risk management aims at reducing the impact of

all kinds of risk that might affect a project.

Risk management consist of three essential activities:

• Risk identification

• Risk assessment

• Risk containment

Risk Identification

A project can get affected by a large variety of risks. Risk identification

identifies all the different risks for a particular project. In order to identify the

important risks which might affect a project, it is necessary to categorize risk

in to different classes. There are three main categories of risks which can

affect a software project are:

 Project Risks

 Project risks concern various forms of budgetary, schedule, personal,

resource and customer- related problems. Software is intangible, it is very

difficult to monitor and control a software project.

 Technical Risks

Jharsuguda Engineering School Page 58

Technical risk concern potential design, implementation, interfacing, testing,

and maintenance problem. Technical risks also include incomplete

specification, changing specification, technical uncertainly. Most technical

risks occur due the development teams insufficient knowledge about the

product .

 Business risks

Business risks include risks of building an excellent product that no one

wants, losing budgetary or personal commitments etc.

Risks Assessment

The goal of risks assessment is to rank the risks so that risk management can

focus attention and resources on the more risks items. For risks assessment,

each risk should be rated in two ways:

a> The likelihood of a coming true (r)

b> The consequence of the problem associated with that risk(s)

 The priority of each risk can be computed as

 p= r*s

Where p is the priority with which the risk must be handled, r is the

probability of the risk becoming true and s is the severity of damaged caused

due to the risk becoming true .

Risk Containment

After all the identified risk of a project is assessed, plans must be made to

contain the most damaging and the most likely risks. Three main strategies

used for risks containment are:

 Avoid the risk

 Risk reduction

 Transfer the risk

Jharsuguda Engineering School Page 59

Avoid the Risk
This may take several forms such as discussions with the customer to reduce

the scope of the work and giving incentives to engineers to avoid the risk of

manpower turnover etc.

Transfer the Risk

This strategy involves getting the risky component develop by a third party

or buying insurance cover etc.

Risk Reduction

This involves planning ways to contain the damage due to a risk.

Risk leverage = (risk exposure before reduction – risk exposure after

reduction) / (Cost of reduction)

Jharsuguda Engineering School Page 60

Chapter-3
Understanding the need of Requirement Analysis

Contents

3.1 Need for requirement analysis
3.2 Steps in requirement dictation for software – initiating the process
facilitated
 application specific techniques and quality function deployment.
3.3 Principles of analysis.
3.4 Software prototyping.
3.5 Prototyping approach.
3.6 Prototyping tools and methods.
3.7 Software requirement specification principle.
3.8 SRS Document.
3.9 Characteristics and organization of SRS document.

3.1 Need for Requirement Analysis

Requirement analysis is a Software engineering task that bridges the gap

between system level requirements engineering and software design.

Requirement analysis provides software designer with a representation of

system information, function, and behavior that can be translated to data,

architectural, and component-level designs.

 Software requirement analysis may be divided into five areas of effort:

 Problem recognition

 Evaluation and synthesis

 Modeling

 Specification

 Review

Jharsuguda Engineering School Page 61

3.2 Steps in Requirements Elicitation for Software: Initiating
the Process, Facilitated Application Specification Techniques,
Quality Function Deployment

Before requirements can be analyzed, modeled or specified they must be

gathered through an elicitation process.

Initiating the Process

• The most commonly used requirements elicitation technique is to

conduct a meeting or interview. Customer meetings are the most

commonly used technique.

• Use context free questions to find out customer's goals and benefits,

identify stakeholders, gain understanding of problem, determine

customer reactions to proposed solutions, and assess meeting

effectiveness.

Facilitated Application Specification Techniques

• Meeting held at neutral site, attended by both software engineers and

customers.

• Rules established for preparation and participation.

• Agenda suggested to cover important points and to allow for

brainstorming.

• Meeting controlled by facilitator (customer, developer, or outsider).

• Goal is to identify problem, propose elements of solution, negotiate

different approaches, and specify a preliminary set of solution

requirements.

Jharsuguda Engineering School Page 62

Quality Function Deployment (QFD)

Quality function deployment is a quality management technique that

translates the needs of the customer into technical requirements for software.

Quality function deployment identifies three types of requirements:

• Normal requirements: The objectives and goals that are stated for a

product or system during meetings with the customer.

• Expected requirements: These requirements are implicit to the

product or system (customers assumes will be present in a

professionally developed product without having to request them

explicitly).

• Exciting requirements: These features that go beyond the

customer's expectations and prove to be very satisfying when they

are present.

 Function deployment is used to determine the value of each function that is

required for the system. Information deployment identifies both the data

objects and events that the system must consume and produce. Task

deployment examines the behavior of the system or product within the

context of its environment. Value analysis used to determine the relative

priority of requirements during function, information, and task deployment.

3.3 Principles of Analysis

All analysis methods are related by a set of operational principles:

• The information domain of the problem must be represented and

understood.

• The functions that the software is to perform must be defined.

• Software behavior must be represented

Jharsuguda Engineering School Page 63

• Models depicting information function and behavior must be

partitioned in a hierarchical manner that uncovers detail.

• The analysis process should move from the essential information

toward implementation detail.

3.4 Software Prototyping

The prototyping paradigm can be either close-ended or open-ended. The

close-ended approach is called throwaway prototyping and an open-ended

approach called evolutionary prototyping.

3.5 Prototyping Approach

Throwaway prototyping: Prototype only used as a demonstration of product

requirements.

 Evolutionary prototyping uses the prototype as the first part of an analysis

activity that will be continued into design and construction.

The customer must interact with the prototype, it is essential that:

a) Customer resources must be committed to evaluation and refinement

of the prototype.

 b) Customer must be capable of making requirements decisions in a

 timely manner.

3.6 Prototyping Tools and Methods

Three generic classes of methods and tools are:

• Fourth generation techniques: Fourth generation techniques (4GT)

tools allow software engineer to generate executable code quickly.

• Reusable software components: Assembling prototype from a set of

existing software components.

• Formal specification and prototyping environments can interactively

 create executable programs from software specification models.

Jharsuguda Engineering School Page 64

3.7 Software Requirement Specification Principle

 Specification principles are:

• Separate functionality from implementation.

• Develop a behavioral model that describes functional responses to all

system stimuli.

• Define the environment in which the system operates and indicate how

the collection of agents will interact with it.

• Create a cognitive model rather than an implementation model

• Recognize that the specification must be extensible and tolerant of

incompleteness.

• Establish the content and structure of a specification so that it can be

changed easily.

3.8 SRS Document

The requirements analysis and specification phase starts once the feasibility

study phase is completed and the project is found to be financially sound and

technically feasible. The goal of the requirement analysis and specification

phase is to clearly understand the customer requirements and to

systematically organize these requirements in a specification document. This

phase consists of two activities:

• Requirements gathering and analysis.

• Requirements specification

System analysts collect data pertaining to the product to be developed and

analyze these data to conceptualize what exactly needs to be done. The

analyst starts the requirements gathering and analysis activity by the

collecting all information from the customer which could be used to develop

the requirements of the system. The analyst then analyzes the collect

Jharsuguda Engineering School Page 65

information to obtain a clear and thorough understanding of the product to be

developed.

Two main activities involved in the requirements gathering and analysis

phase are:

 Requirements Gathering: The activity involves interviewing the end-

users and customers and studying the existing documents to collect all

possible information regarding the system.

 Analysis of Gathered Requirements : The main purpose of this activity is

 to clearly understand the exact requirements of the customer. The analyst

 should understand the problems:

• What is the problem?

• Why is it important to solve the problem?

• What are the possible solutions to the problem?

• What exactly are the data input to the system and what exactly the data

output required of the system?

• What are the complexities that might arise while solving the problem?

 After the analyst has understood the exact customer requirements, he

proceeds to identify and resolve the various requirements problems.

 There are three main types of problems in the requirement that analyst

 needs to identify and resolve:

 Anomaly

 Inconsistency

 Incompleteness

Anomaly: An anomaly is an ambiguity in the requirement. When a

requirement is anomalous, several interpretation of the requirement are

possible.

Jharsuguda Engineering School Page 66

Example: In a process control application, a requirement expressed by one

user is that when the temperature becomes high, the heater should be

switched off. (Words such as high, low, good, bad etc, are ambiguous

without proper quantification). If the threshold above which the temperature

can be considered to be high is not specified, then it can be interpreted

differently by different people.

Inconsistency: Two requirements are said to be inconsistent, if one of the

requirements contradicts the other two-end user of the system give

inconsistent description of the requirement.

Example: For the case study of the office automation, one of the clerk

described that a student securing fail grades in three or more subjects should

have to repeat the entire semester. Another clerk mentioned that there is no

provision for any student repeat a semester.

Incompleteness: An incomplete set of requirements is one in which some

requirements have been overlooked.

Software Requirement Specification

After the analyst has collected all the required information regarding the

software to be developed and has removed all incompleteness,

inconsistencies and anomalies from the specification, analyst starts to

systematically organize the requirements in the form of an SRS document.

The SRS document usually contains all the user requirements in an informal

form.

 Different People need the SRS document for very different purposes. Some

of the important categories of users of the SRS document and their needs are

as follows.

• Users, customers and marketing personnel

The goal of this set of audience is to ensure that the system as

describe in the SRS document will meet their needs.

Jharsuguda Engineering School Page 67

• The software developers refer to the SRS document to make sure that

they develop exactly what is required by the customer.

• Test Engineers: Their goal is to ensure that the requirements are

understandable from a functionality point of view, so that they can test

the software and validate its working.

• User Documentation Writers: Their goal in reading the SRS document

is to ensure that they understand the document well enough to be able

to write the users’ manuals.

• Project Managers

They want to ensure that they can estimate the cost of the project

easily by referring to be SRS document and that it contains all

information required to plan the project.

• Maintenance Engineers

The SRS document helps the maintenance engineers to understand the

functionalities of the system. A clear knowledge of the functionalities

can help them to understand the design and code.

Contents of the SRS Document

An SRS document should clearly document:

• Functional Requirements

• Nonfunctional Requirements

• Goals of implementation

The functional requirements of the system as documented in the SRS

document should clearly describe each function which the system would

support along with the corresponding input and output data set.

Jharsuguda Engineering School Page 68

 Fig. 3.1 Contents of SRS Document

The non-functional requirements also known as quality requirements. The

non-functional requirements deal with the characteristics of the system that

cannot be expressed as functions.

Examples of nonfunctional requirements include aspects concerning

maintainability, portability and usability, accuracy of results. Non-functional

requirements arise due to user requirements, budget constraints,

organizational policies and soon.

The goals of implementation part of the SRS document gives some general

suggestion regarding development. This section might document issues such

as revisions to the system functionalities that may be required in the future,

new devices to be supported in the future.

3.9 Characteristics and Organization of SRS Document

Characteristics of SRS document

Concise: The SRS document should be concise, unambiguous, consistent

and complete. Irrelevant description reduced readability and also increases

error possibilities.

Structured: The SRS document should be well-structured. A well-structured

document is easy to understand and modify.

Jharsuguda Engineering School Page 69

Block-box View: It should specify what the system should do. The SRS

document should specify the external behavior of the system and not discuss

the implementation issues. The SRS should specify the externally visible

behavior of the system. [For this reason the SRS document is called the

block-box specification of a system.]

Conceptual Integrity : The SRS document should exhibit conceptual integrity

so that the reader can easily understand the contents.

Verifiable: All requirements of the system as documented in the SRS

document should be verifiable if and only if there exists some finite cost-

effective process with which a person of machine can check that the software

meets the requirement.

Modifiable : The SRS is modifiable if and only if its structure and style are

such that any changes to the requirements can be made easily, completely

and consistently while retaining the structure and style.

Organization of the SRS Document

Organization of the SRS document and the issues depends on the type of the

product being developed. Three basic issues of SRS documents are:

functional requirements, non functional requirements, and guidelines for

system implementations. The SRS document should be organized into:

1. Introduction

(a) Background

(b)Overall Description

(c)Environmental Characteristics

 (i)Hardware

 (ii)Peripherals

 (iii)People

1. Goals of implementation

Functional requirements

Jharsuguda Engineering School Page 70

Nonfunctional Requirements

Behavioural Description

(a) System States

(b)Events and Actions

The `introduction’ section describes the context in which the system is being
developed, an overall description of the system and the environmental
characteristics. The environmental characteristics subsection describes the
properties of the environment with which the system will interact.

Jharsuguda Engineering School Page 71

Chapter-4

Understanding the Principles and Methods of S\W Design

Contents

4.1 Importance of S/W Design
4.2 Design principles and Concepts

 4.3 Cohesion and coupling
4.4 Classification of cohesiveness
4.5 Classification of coupling
4.6 S/W design approaches
4.7 Structured analysis methodology
4.8 Use of DF diagram
4.9 List the symbols used in DFD
4.10 Construction of DFD
4.11 Limitations of DFD
4.12 Uses of structured of chart and structured design
4.13 Principles of transformation of DFD to structured chart
4.14 Transform analysis and transaction analysis
4.15 Object oriented concepts
4.16 Object oriented and function oriented design

4.1 Importance of Software Design

Software design aims to plan and create a blueprint for the implementation of

the software. The main aim and focus of the software design process is to

cover the gap between understanding the specification and implementing

them in the software. Software design transforms the SRS document into

implementable form using a programming language. The design

representations are used to describe how the system is to be structured and

developed to meet the specification in the best manner.

The following items are designed and documented during the design phase.

• Different modules in the solution should be cleanly identified. Each

module should be named according to the task it performs.

• The control a relationship exists among various modules should be

Jharsuguda Engineering School Page 72

 identified in the design document. The relationship is also known as the call

relationship.

• Interface among different modules. The interface among different

modules identifies the exact data items exchanged among the modules.

• Data structures of the individual modules.

• Algorithms required to implement the individual modules.

4.2 Design Principles and Concepts

Design Principles

Software design is both a process and a model. The design process is a

sequence of steps that enable the designer to describe all aspects of the

software to be built. Basic design principles are:

o The design process should not suffer from “tunnel vision”.

o The design should be traceable to the analysis model.

o The design should not reinvent the wheel.

o The design should “minimize the intellectual distance” between the

 software and the problem in the real world.

o The design should exhibit uniformity and integration.

o The design should be structured to accommodate change.

o The design should be structured to degrade gently.

o Design is not coding.

o The design should be assessed for quality.

o The design should reviewed to minimize conceptual errors.

Design Concepts

Abstraction: Each step in the software engineering process is a refinement in

the level of abstraction of the software solution.

 - Data abstractions: a named collection of data

Jharsuguda Engineering School Page 73

 - Procedural abstractions: A named sequence of instructions in a

 specific function

 - Control abstractions: A program control mechanism without

 specifying internal details.

The design process takes the SRS documents as the input and is dedicated to

plan for implementation of the software. The design activities are classified

into two parts.

• Preliminary(or high-level)design

• Detailed design

Preliminary Design / High-Level Design

Through high-level design, a problem is decomposed into a set of modules,

the control relationships among various modules identified and also the

interfaces among various modules are identified. The outcome of high-level

design is called the program structure or the software architecture many

different types of notations have been used to represent a high-level design.

A popular way is to use a tree-like diagram called the structured chart to

represent the control hierarchy in high-level design. Another popular design

representation technique called UML that is being used to document object-

oriented design. Once the high-level design is complete, detailed design is

undertaken.

Detailed Design

During detailed design, the data structure and the algorithms of different

modules are designed. The outcome of the detailed design stage is usually

known as the module specification document.

Jharsuguda Engineering School Page 74

What is a Good Software Design

There is no unique way to design a system. Using the same design

methodology, different engineers can arrive at very different design

solutions. Even the same engineer can work out many different solutions to

the same problem.

The definition of “a good software design” can vary depending on the

application for which it is being designed. For example, the memory size

used up by a program may be an important issue to characterize a good

solution for embedded software development-since embedded applications

are often required to be implement using memory of limited size due to

space, cost or power consumption constraints. For embedded applications,

factors such as design comprehensibility may take a back seat while judging

the goodness of design. For embedded applications, one may sacrifice design

comprehensibility to achieve code compactness. Therefore, the criteria used

to judge how good a given design solution is can vary widely depending on

the application. The goodness of a design is dependent on the targeted

application. Different characteristics of a software design are:

Correctness: A good design should correctly implement all the

functionalities of the system.

Understandability: A good design should be easily understandable.

Efficiency: A good design solution should adequately address resource, time

and cost optimization issues.

Maintainability: A good design should be easy to change.

In order to facilitate understandability of a design, the design should have the

following features:

• It should assign consistent and meaningful names for various design

components.

Jharsuguda Engineering School Page 75

• The design should be modular. The term modularity means that it

should use a cleanly decomposed set of modules.

 It should neatly arrange the modules in a hierarchy, e.g. tree-like diagram.

Modularity

 A modular design achieves effective decomposition of a problem. It is a basic

characteristic of any good design solution. Decomposition of a problem into

modules facilitates the design by taking advantage of the divide and conquers

principle. If different modules are independent of each other, then each

module can be understood separately. This reduces the complexity of the

design solution.

Clean Decomposition

The modules in a software design should display high cohesion and low

coupling. The modules are more or less independent of each other.

Layered Design

In a layered design, the modules are arranged in a hierarchy of layers. A

module can only invoke functions of the modules in the layer immediately

below it. A layer design can make the design solution easily understandable.

A layer design can be considered to be implementing control abstraction,

since a module at a lower layer is unaware of the higher layer modules.

4.3 Cohesion and Coupling

A good software design implies clean decomposition of the problem into

modules and thereafter the neat arrangement of these modules. The primary

characteristics of a neat module decomposition are high cohesion and low

coupling. Cohesion is a measure of the functional strength of a module where

as the coupling between two modules is a measure of the degree of

interdependence or interaction between the two modules. A modules having

Jharsuguda Engineering School Page 76

high cohesion and low coupling is said to be functionally independent of

other modules. A cohesive module performs a single task or function.

Cohesion

 Cohesion is a measure of the strength of the relationship between

responsibilities of the components of a module. A module is said to be highly

cohesive if its components are strongly related to each other by some means

of communication or resource sharing or the nature of responsibilities. High

cohesion facilitates execution of a task by maximum intra-modular

communication and least inter-module dependencies. It promotes

independencies between different modules.

Error isolation

Functional independence reduces error propagation. If a module is

functionally independent, its degree of interaction with other modules is less.

Therefore, any error existing in a module would not directly affect the other

modules.

Scope for Reuse

Reuse of a module becomes possible, because each module does some well-

defined and precise functions and the interface of the module with other

module is simple and minimal. Therefore a cohesive module can be easily

taken out and be reused in a different program.

Understandability

Complexity of the design is reduced, because different modules are more or

less independence of each other and can be understood in isolation.

Jharsuguda Engineering School Page 77

4.4 Classification of Cohesiveness

There are seven types or levels of cohesion.

Low High

 Fig. 4.1 Classification of Cohesion

Coincidental is the worst type of cohesion and functional is the best cohesion.

Coincidental Cohesion

A module is said to have coincidental cohesion, if it performs a set of tasks

that relate to each other very loosely, if at all. In this case the module

contains a random collection of functions.

The different functions of the module carry out. The different unrelated

activities are issuing of librarian leave request.

Logical Cohesion

A module is said to be logically cohesive, if all elements of the module

perform similar operations. For example, consider a module that consists of a

set of print functions to generate various types of output reports such as

salary slips annual reports etc.

Temporal Cohesion

 When a module contains functions that are related by the fact that all the

functions must be executed in the same time span, the module is said to

exhibit temporal cohesion. For example, consider the situation: when a

computer is booted, several functions need to be performed.

These include initialization of memory and devices, loading the operating

system etc. When a single module performs all these tasks, then the module

can be said to exhibit temporal cohesion.

Coincidental Logical temporal Procedural communication sequential functional

Jharsuguda Engineering School Page 78

Procedural Cohesion

A module is said to possess procedural cohesion, if the set of functions of the

module are executed one after the other, though these functions may work

entirely different purposes and operate on different data. For example, in an

automated teller machine(ATM),member-card validation is followed by

personal validation by personal identification number and following this, the

request option menu is displayed.

Communication Cohesion

A module is said to have communicational cohesion, if all functions of the

module refer to or update the same data structure.

Sequential Cohesion

 A module is said to possess sequential cohesion, if the different functions of

the module execute in a sequence, and the output from one function is input

to the next in the sequence.

Functional Cohesion

A module is said to possess functional cohesion, if different function of the

module cooperate to complete a single task.

The functions issue-book (), return-book (), query-book () and find borrower
() together manage all activities concerned with book lending.

4.5 Classification of Coupling

The coupling between two modules indicates the degree of interdependence

between modules. Two modules with high coupling are strongly

interconnected and thus dependent on each other. Two modules with low

coupling are not dependent on one another.”Uncoupled” modules have no

interconnections, they are completely independent.

Jharsuguda Engineering School Page 79

 Fig. 4.2 Uncoupled: No Dependencies

 Fig. 4.3 Loosely coupled: Fig. 4.4 Highly coupled:
 some dependencies many dependencies

A good design will have low coupling. Coupling is measured by the number

of interconnections between modules. Coupling increases as the number of

calls between modules increases.

Different types of coupling are:

Data Coupling

It is a type of loose coupling and combines modules by passing some

parameters from one module to another. The parameters that are passed are

usually atomic data type of programming language. Eg an integer, a float, a

character etc. This data item should be problem related and not used for

control purposes.

Jharsuguda Engineering School Page 80

Data Stamp Control Common Content

 Fig. 4.5 Classification of Coupling

Stamp Coupling

Two modules are stamp coupled, if they communicate using a composite data

item such as a structure in C.

Control Coupling

Module A and B are said to be control coupled if they communicate by

passing of control information.

Common Coupling

Two modules are common coupled, if they share some global data items.

Content coupling

Content coupling exist between two modules, if their code is shared.eg. a

branch from one module into another module.

4.6 S/W Design Approaches

Two different approaches to software design are: Function-oriented design

and Object-oriented design

Function oriented design

Features of the function-oriented design approach are:

Top-down decomposition

In top-down decomposition, starting at a high-level view of the system, each

high-level function is successfully refined into more detailed functions.

Ex Consider a function create-new-library member which essentially creates

Jharsuguda Engineering School Page 81

the record for a new member, assigns a unique membership number to him

and prints a bill towards his membership charge. This function may consists

of the following subfunctions:

• assign-membership-number

• create-member-record

• print-bill

Each of these sub functions may be split into more detailed sub functions

and so on.

Object Oriented Design

In the object-oriented design approach, the system is viewed as a collection

of objects. The system state is decentralized among the objects and each

object manages its own state information.

Objects have their own internal data which define their state. Similar objects

constitute a class. Each object is a member of some class. Classes may inherit

features from a super class. Conceptually, objects communicate by message

passing.

4.7 Structured Analysis Methodology

The aim of structured analysis activity is to transform a textual problem

description into a graphic model. Structured analysis is used to carry out the

top-down decomposition of the set of high-level functions depicted in the

problem description and to represent them graphically. During structured

design, all functions identified during structured analysis are mapped to a

module structure. Structure analysis technique is based on the following

principles:

 Top-down decomposition approach

 Divide and conquer principle. Each function is decomposed

independently

Jharsuguda Engineering School Page 82

 Graphical representation of the analysis results using Data Flow

Diagram (DFD).

4.8 Use of Data Flow Diagram

The DFD also known as bubble chart is a simple graphical formalism that

can be used to represent a system in terms of the input data to the system,

various processing carried out on these data & the output data generated by

the system. DFD is a very simple formalism – it is simple to understand and

use. A DFD model uses a very limited number of primitive symbols to

represents the functions performed by a system and the dataflow among these

functions.

4.9 Lists the Symbols used in DFD

 Five different types of primitive symbols used for constructing DFDs. The

meaning of each symbol is

Functional symbol () : A function is represented is using a circle.

External entity symbol () : An external entities are essentially those

physical entities external to the software system which interact with the

system by inputting data to the system or by consuming the data produced by

the system.

Data flow symbol () : A directed arc or an arrow is used as a data flow

symbol.

Data store symbol () : A data store represents a logical file. It is

represented using two parallel lines.

Output symbol () : The output symbol is used when a hard copy is

produced and the user of the copies cannot be clearly specified or there are

several users of the output.

Jharsuguda Engineering School Page 83

4.10 Construction of DFD

A DFD model of a system graphically represent how each input data is

transformed to its corresponding output data through a hierarchy of DFDs.

A DFD start with the most abstract definition of the system (lowest level)

and at each higher level DFD, more details are successively introduced. The

most abstract representation of the problem is also called the context

diagram.

Context Diagram

The context diagram represents the entire system as a single bubble. The

bubble is labelled according to the main function of the system. The various

external entities with which the system interacts and the data flows occurring

between the system and the external entities are also represented. The data

input to the system and the data output from the system are represented as

incoming and outgoing arrows.

Level 1 DFD

The level 1 DFD usually contains between 3 and 7 bubbles. To develop the

Level 1 DFD, examine the high-level functional requirements. If there are

between 3 to 7 high-level functional requirements, then these can be directly

represented as bubbles in the Level 1 DFD. We can examine the input data

to these functions and the data output by these functions and represent them

appropriately in the diagram. If a system has more than seven high-level

requirements, then some of the related requirements have to be combined and

represented in the form of a bubble in the Level 1 DFD.

 X

 Y

Z

Fig. 4.6 Context Diagram

Jharsuguda Engineering School Page 84

Decomposition

Each bubble in the DFD represents a function performed by the system. The

bubbles are decomposed into sub functions at the successive level of the

DFD. Each bubble at any level of DFD is usually decomposed between three

to seven bubbles. Decomposition of a bubble should be carried out on until a

level is reached at

Example: Student admission and examination system

This statement has three modules, namely

• Registration module

• Examination module

• Result generation module

Registration module:

 An application must be registered, for which the applicant should pay the

required registration fee. This fee can be paid through demand draft or cheque

drawn from a nationalized bank. After successful registration an enrolment

number is allotted to each student, which makes the student eligible to appear

in the examination.

Examination module:

a) Assignments : Each subject has an associated assignment, which is

compulsory and should be submitted by the student before a specified

date.

b) Theory Papers : The theory papers can be core or elective. Core

papers are compulsory papers, while in elective papers students have a

choice to select.

 c) Practical papers: The practical papers are compulsory and every

semester has practical papers.

Result generation Module:

The result is declared on the University’s website. This website contains

Jharsuguda Engineering School Page 85

mark sheets of the students who have appeared in the examination of the said

semester.

Data Flow Diagram

Level 1 DFD

Student
Admission and
Examination
System

Student

Registration

Examination

Result Generation

Fig. 4.7 Level 0 DFD or Context Diagram

View Report Enter
Enrolment
No. and
Semester

Fig 4.8 Level 1 DFD of Student Admission and Examination System

 1
Registration

2
Login

3
Examination

System

4
Student
Choice

Management
System

5
Student

Information
Management

Student

Administrator

Subject
Choice Detail

Student Detail
Enrolment No. Alloted Application

for
Registration

Student
Information
Entry

Enter Student
Choice

Jharsuguda Engineering School Page 86

Level 2 DFD

1.1
Verification
of Payment

1.2
Admission

Administrator Student

Student Detail

Registration Form

Enrolment No.
Alloted

Student Registered

Demand Draft No. ,
Cheque No.

Fig.4.9 Level 2 DFD of Registration

2.1
Authenticated

User

Student
Coordinator

Administrator

User ID, Password
Enrolment No., Semester

User ID, Password

User Account Detail

Fig. 4.10 Level 2 DFD of Authenticated
User

Jharsuguda Engineering School Page 87

4.11 Limitations of DFD

♦ A data flow diagram does not show flow of control. It does not show

details linking inputs and outputs within a transformation. It only

shows all possible inputs and outputs for each transformation in the

system.

♦ The method of carrying out decomposition to arrive at the successive

level and the ultimate level to which decomposition is carried out are

highly subjective and depend on the choice and judgement of the

analyst. Many times it is not possible to say which DFD representation

is superior or preferable to another.

♦ The data flow diagram does not provide any specific guidance as to

how exactly to decompose a given function into its subfunctions.

♦ Size of the diagram depends on the complexity of the logic.

3.1
Marks

Information
Management

3.2
Result
Report

Generation

Student Detail

Marks Detail

Mark Sheet

Semester Result

Fig 4.11Level 2 DFD of Examination

Jharsuguda Engineering School Page 88

4.12 Structured Design

The aim of structured design is to transform the results of the structured

analysis that is a DFD representation into a structured chart. A structured

chart represents the software architecture i.e. The various modules making up

the system, the module dependency and the parameters that are passed

among the different modules. The structure chart representation can be easily

implemented using some programming language. Since the main focus in a

structure chart representation is on module structure of a software and the

interaction among the different modules. The procedural aspects are not

represented in a structured design. The basic building blocks which are used

to design structure charts are:

Rectangular boxes: A rectangular box represent module

Module invocation arrows

An arrow connecting two modules implies that during program execution,
control is passed from one module to the other in the direction of the
connecting arrow.

Data flow arrows

These are small arrows appearing alongside the module invocation arrows.
The data flow arrows are annotated with the corresponding data name. The
data flow arrows represents the fact that the named data passes from one
module to the other in the direction of the arrow.

Flow Chart vs Structure Chart

A flow chart is a convenient technique to represent the flow of control in a

program. A structure chart differs from a flow chart in three principal ways:

• It is usually difficult to identify different modules of the software from its

flow chart representation.

Jharsuguda Engineering School Page 89

• Data interchange among different modules is not represented in a flow

chart.

 Sequential ordering of tasks inherent in a flow chart is suppressed in a

 structure chart.

4.13 Principles of transformation of DFD to structure chart

Structure design provides two strategies to guide transformation of a DFD
into a structure chart:

Transform analysis

Transaction analysis

Normally, one starts with the level 1 DFD, transforms in into module

representation using either the transform or the transaction analysis and then

proceeds towards the lower-level DFDs. At each level of transformation,

first determine whether the transform or the transaction analysis is applicable

to a particular DFD.

Transform Analysis

Transform analysis identifies the primary functional components (modules)

and the high level input and outputs for these components. The first step in

transform analysis is to divide the DFD into three types of parts:

 Input

 Logical processing

 Output

The input portion in the DFD includes processes that transform input data

from physical to logical form. Each input portion is called an afferent branch.

The output portion of a DFD transforms output data from logical form to

physical form. Each output portion is called an efferent branch. The

remaining portion of a DFD is called central transform.

Jharsuguda Engineering School Page 90

In the next step of transform analysis, the structure chart is derived by

drawing one functional component for the central transform and the afferent

and efferent branches.

Identifying the highest level input and output transforms require experience

and skill. The first level of structure chart is produced by representing each

input and output unit as boxes and each central transforms a single box.

In the third step of transform analysis, the structure chart is refined by adding

subfunctions required by each of the high-level functional components. Many

levels of functional components may be added. This process of breaking

functional components into subcomponents is called factoring. Factoring

includes adding read and write modules, error-handling modules,

initialization and termination process etc. The factoring process is continued

until all bubbles in the DFD are represented in the structure chart.

Transaction Analysis

A transaction allows the user to perform some meaningful piece of work. In a

transaction-driven system, one of several possible paths through the DFD is

traversed depending upon the input data item. Each different way in which

input data is handled in a transaction. The number of bubbles on which the

input data to the DFD are incident defines the number of transactions. Some

transactions may not require any input data.

For each identified transaction, we trace the input data to the output. In the

structure chart, we draw a root module and below this module we draw each

identified transaction of a module.

Jharsuguda Engineering School Page 91

Chapter-5
Understanding the Principles of User Interface Design

5.1 Rules for UDI
5.2 Interface design model
5.3 UID Process and models
5.4 Interface design activities defining interface objects, actions and the
 design issues.
5.5 Compare the various types of interface
5.6 Main aspects of Graphical UI, Text based interface.

5.1 Rules for UID (User Interface Design)

User interface design creates an effective communication medium between a

human and a computer. User interface design begins with the identification

of user, task, and environment requirements. Once user tasks have been

identified, user scenarios are created and analyzed to define a set of interface

objects and actions.

Three Golden rules of user interface design are:

• Place the user in control.

• Reduce the user’s memory load.

• Make the interface consistent.

Place the user in control

 Number of design principles that allow the user to maintain the control are:

 Define interaction modes in a way that does not force a user into

unnecessary or undesired actions.

 Provide for flexible interaction, different users have different

interaction preferences.

 Allow user interaction to be interruptible.

Jharsuguda Engineering School Page 92

 Streamline interaction as skill levels advance and allow the interaction

to be customized.

 Hide technical internals from the casual user.

 Design for different interaction with objects that appear on the screen.

 Reduce the User’s Memory Load

 Principles that enable an interface to reduce the user’s memory load are:

 Reduce demand on short-term memory.

 Establish meaningful defaults.

 Define shortcuts that are intuitive.

 Disclose information in a progressive fashion.

Make the Interface Consistent

The interface should present and acquire information in a consistent fashion.

The set of design principles that help make the interface consistent are:

 Allow the user to put the current task into a meaningful context.

 Maintain consistency across a family of applications.

5.2Interface Design Models

The process for designing a user interface begins with the creation of

different models of system function. Four different user interface design

models are:

 User model

 Design model

 Mental model

 Implementation model

A software engineer establishes a user model, the software engineer creates a

design model, the end-user develops a mental image that is often called the

user’s model or the system perception, and the implementation of the system

create a system image.

Jharsuguda Engineering School Page 93

 A design model of the entire system incorporates data, architectural,

interface, and procedural representations of the software.

The user model establishes the profile of end-users of the system. The system

perception is the image of the system that end-users carry in their heads.

5.3 The User Interface Design Process

The design process for user interfaces is iterative and can be represented

using a spiral model. The user interface design process encompasses four

distinct activities

• User, task, and environment analysis and modelling

• Interface design

• Interface construction

• Interface validation

The initial analysis activity focuses on the profile of the users who will

interact with the system. Skill level and business understanding are recorded

and different user categories are defined. The software engineer attempts to

understand the system perception for each class of users.

Once general requirements have been defined, a more detailed task analysis

is conducted. Those tasks that the user performs to accomplish the goals of

the system are identified, described and elaborated.

The goal of interface design is to define a set of interface objects and actions

that enable a user to perform all defined tasks that meets every usability goal

defined for the system.

Jharsuguda Engineering School Page 94

5.4 Interface Design Activities, Defining Interface Objects and

Actions and the Design Issues

Interface Design Activities

Once task analysis has been completed, all tasks required by the end-user

have been identified and the interface design activity commences. Interface

design steps can be accomplished using the following approach:

o Establish the goals and intentions for each task.

o Map each goal and intention to a sequence of specific actions.

o Specify the action sequence of tasks and subtasks.

o Indicate the state of the system.

o Define control mechanisms, that is the objects and actions available to

the user to alter the system state.

o Show how control mechanisms affect the state of the system.

o Indicate how the user interprets the state of the system from

information provided through the interface.

Defining Interface Objects and Actions

Once the objects and actions have been defined and elaborated. Interface

objects are categorized into types: source, target, and application:

 A source object (e.g. a report icon) is dragged and dropped onto a

target object (e.g. a printer icon) such as to create a hard copy of the

report.

 An application object represents application-specific data that are not

directly manipulated as part of screen interaction such as a list.

After identifying objects and their actions, an interface designer performs

screen layout which involves:

 Graphical design and placement of icons

Jharsuguda Engineering School Page 95

 Definition of descriptive screen text

 Specification and titling for windows

 Definition of major and minor menu items

 Design Issues

 Four common design issues are:

 System response time

 User help facilities

 Error information handling and

 Command labelling

System response time is the primary complaint for many interactive

applications. System response time is measured from the point at which the

user performs some control action until the software responds with desired

output or action. Two important characteristics of system response time are

length and variability.

Two different types of help facilities are integrated and add-on. An integrated

help facility is designed into the software from the beginning. An add-on help

facility is added to the software after the system has been built. User help

facilities must be addressed: when it is available, how it is accessed, how it is

represented to the user, how it is structured, what happens when help is

exited.

An effective error message can do much to improve the quality of an

interactive system and will significantly reduce user frustration when

problems do occur. Every error message or warning produced by an

interactive system should have the following characteristics:

 The message should describe the problem in simple language that a

user can easily understand.

 The message should provide constructive advice for recovering from

the error.

Jharsuguda Engineering School Page 96

 The message should indicate any negative consequences of the error.

 The message should be accompanied by an audible or visual cue such

as a beep, momentary flashing, or a special error colour.

5.5 Compare the Various Types of Interface

User interfaces broadly classified into three categories:

 Command language-based interfaces

 Menu-based interfaces

 Direct manipulation interfaces

Command Language-Based Interfaces

A command language-based interface is based on designing a command

language which the user can use to issue the commands. The user is expected

to frame the appropriate commands in the language and type whenever

required. Command language-based interface allow fast interaction with the

computer and simplify the input of complex commands.

Obviously, for inexperienced users, command language-based interfaces are

not suitable. A command language-based interface is easier to develop

compared to a menu-based or a direct-manipulation interface because

complier writing techniques are well developed. One can systematically

develop a command language interface by using the standard complier

writing tools: Lex and Yacc.

Usually, command language-based interfaces are difficult to learn, and

require the user to memorize the set of primitive commands. Most users

make errors while formulating commands in the command language and also

while typing them in. In a command language-based interface, all

Jharsuguda Engineering School Page 97

interactions with the system is through a keyboard and cannot take advantage

of mouse. For inexperienced users, command language-based interface are

not suitable.

Issues in Designing a Command Language Interface

 The designer has to decide what mnemonics to use for the different

commands. The designer should try to develop meaningful

mnemonics and yet be concise to minimize the amount of typing

required.

 The designer has to decide whether the user will be allowed to

redefine the command names to suit their own preferences.

 The designer has to decide whether it should be possible to

compose primitive commands to form more complex commands.

A sophisticated command composition facility would require the

syntax and semantics of the various command composition options

to be clearly and unambiguously specified. The ability to combine

commands can be usefully exploited by experienced users, but is

quite unnecessary for inexperienced users.

Menu-based interfaces

The advantage of a menu-based interface over a command language-based

interface is that menu-based interface does not require the users to remember

the exact syntax of the commands. A menu based interface is based on

recognition of the command names. In this type of interface the typing effort

is minimal as most interactions are carried out through menu selections using

a pointing device.

Experienced users find a menu-based user interface to be slower than a

command language-based interface because they can type fast and get speed

advantage by composing different primitive commands to express complex

commands. Composing commands in a menu-based interface is not possible.

Jharsuguda Engineering School Page 98

A major challenge in the design of a menu-based interface is that of

structuring the large number of menu choices into manageable forms.

The techniques available to structure of menu items are:

Scrolling Menu

When a full choice list cannot be displayed within the menu area, scrolling of

the menu items is required. This enables the user to view and select the menu

items that cannot be accommodated on the screen.

Fig.5.1 Font size selecting using scrolling menu

Walking Menu

Walking menu is a very commonly used menu to structure a large collection

of menu items. In this technique, when a menu item is selected, it causes

further menu items to be displayed adjacent to it in a sub-menu. A walking

menu can be successfully used to structure commands only if there are

limited choices since each adjacently displayed menu does take up screen

space and the total screen area, after all, is limited.

Jharsuguda Engineering School Page 99

 Fig.5.2 Examples of walking menu

Hierarchical Menu:

In this technique, the menu items are organized in a hierarchy or tree

structure. Selecting a menu item causes the current menu display to be

replaced by an appropriate sub-menu. Walking menu can be considered to be

a form of hierarchical menu. Hierarchical menu, on the other hand, can be

used to manage a large number of choices, but the users are likely to face

navigational problems and therefore lose track of their whereabouts in the

menu tree. This probably is the main reason why this type of interface is very

rarely used.

Direct Manipulation Interfaces

Direct manipulation interfaces present the interface to the user in the form of

visual models i.e. icons. This type of interface is called as iconic interface. In

this type of interface, the user issues commands by performing actions on the

visual representations of the objects.

Jharsuguda Engineering School Page 100

The advantages of iconic interfaces are that the icons can be recognised by

the users very easily and icons are language-independent.

 5.6 Main aspects of Graphical UI, Text based Interface

Aspects of GUI

 In a GUI, multiple windows with different information can

simultaneously be displayed on the user screen.

 Iconic information representation and symbolic information

manipulation is possible in a GUI. Symbolic information manipulation,

such as dragging an icon representing a file to a trash can for deleting,

is intuitively very appealing and the user can instantly remember it.

 A GUI usually supports command selection using an attractive and

user-friendly menu selection system.

 In a GUI, a pointing device such as a mouse or a light pen can be used

for issuing commands. The use of a pointing device increases the

efficacy of the command issue procedure.

 A GUI flip side, a GUI requires special terminals with graphics

capabilities for running and also requires special input devices such as

a mouse.

 Text Based Interface

Text based interface only use text, symbols and colours available on a given

text environment. Text- based user interface can be implemented on a cheap

alphanumeric display terminal.

Jharsuguda Engineering School Page 101

Chapter -6

Understanding the Principles of Software Coding

6.1 Coding standards and guidelines.
6.2 Code walk through.
6.3 Code inspections and software documentation.
6.4 Distinguish between unit testing integration testing and system testing.
6.5 Unit testing.
6.6 Methods of black box testing.
6.7 Equivalence class partitioning and boundary value analysis.
6.8 Methodologies for white box testing.
6.9 Different white box methodologies statement coverage branch coverage,
 condition coverage, path coverage, data flow based testing and mutation
 testing.
6.10 Debugging approaches.
6.11 Debugging guidelines.

6.12 Need for integration testing.
6.13 Compare phased and incremental integration testing
6.14 System testing alphas beta and acceptance testing.
6.15 Need for stress testing and error seeding.
6.16 General issues associated with testing.

 6.1 Coding Standards and Guidelines

Good software development organizations develop their own coding

standards and guidelines depending on what best suits their needs and types

of products they develop.

Representative coding standards are:

Rules for limiting the use of global: These rules list what types of data can

be declared global and what cannot.

Contents of the headers preceding codes for different modules: The

information contained in the headers of different modules should be standard

for an organization. The exact format in which the header information is

Jharsuguda Engineering School Page 102

organized can also be specified. Some standard header data are:

a) Name of the module

b) Date on which the module was created

c) Author's name

d) Modification history

e) Synopsis of the module

f) Different functions supported along with their input/output parameters

g)Global variables accessed / modified by the modules

Naming conventions for global variables, local variables and constants

identifiers: A possible naming conventions can be that global variable names

always start with a capital letter, local variable names are small letters, and

constant names are always capital letters.

Error return conventions and exception handling mechanisms: The way

error conditions are reported by different functions in a program and the way

common exception conditions are handled should be standard within an

organization.

6.2 Code Walk-Through

The main objective of code walk-through is to discover the algorithmic and

logical errors in the code. Code walkthrough is an informal code analysis

technique.

In this technique, after a module has been coded, it is successfully compiled

and all syntax errors are eliminated. Some members of the development team

are given the code a few days before the walk-through meeting to read and

understand the code. Each member selects some test cases and simulates

execution of the code through different statements and functions of the code.

Even though a code walkthrough is an informal analysis technique, several

guidelines have evolved for making this technique more effective and useful.

Some guidelines are:

Jharsuguda Engineering School Page 103

● The team performing the code walkthrough should not be either too big or

too small. Ideally, it should consist of three to seven members.

• Discussions should focus on discovery of errors and not on how to fix

the discovered errors.

6.3 Code Inspection and Software Documentation`

Code Inspection

The principal aim of code inspection is to check for the presence of some

common types of errors caused due to oversight and improper programming.

Some classical programming errors which can be checked during code

inspection are:

 Use of uninitialized variables

 Jumps into loops

 Non-terminating loops

 Array indicates out of bounds

 Improper storage allocation and deallocation

 Use of incorrect logical operators

 Improper modification of loop variables

 Comparison of equality of floating point values.

Software Documentation`

Different kinds of documents such as user's manual, software requirements

specification (SRS) document, design document, test document, installation
manual are part of the software engineering process. Good documents are

very useful and serve the following purposes:

➢ Good documents enhance understandability and maintainability of a

software product. They reduce the effort and time required for

maintenance.

Jharsuguda Engineering School Page 104

➢ Good documents help the users in effectively exploiting the system.

➢ Good documents help in effectively overcoming the manpower turnover

problem. Even when an engineer leaves the organization, the newcomer

can build up the required knowledge quickly.

➢ Good documents help the manner in effectively tracking the progress of

the project.

Different types of software documents can be broadly classified into:

o Internal documentation

o External documentation

Internal Documentation

Internal documentation is the code comprehension features provided in the

source code itself. Internal documentation can be provided in the code in

several forms. The important types of internal documentation are:

 Comments embedded in the source code

 Use of meaningful variable names

 Module and function headers

 Code structuring (i.e. Code decomposed into modules and functions)

 Use of constant identifiers

 Use of user-defined data types
External documentation

External documentation is provided through various types of supporting

documents such as users' manual, software requirements specification

document, design document, test document etc. A systematic software

development style ensures that all these documents are produced in an

orderly fashion.

An important feature of good documentations consistency with the code.

Inconsistencies in documents creates confusion in understanding the product.

Also, all the documents for a product should be up-to-date.

Jharsuguda Engineering School Page 105

 6.4 Distinguish among Unit Testing, Integration Testing, and
 System Testing

A software product is normally tested in the three levels:

• Unit testing

• Integration testing

• System testing

A unit test is a test written by the programmer to verify that a relatively small

piece of code is doing what it is intended to do. They are narrow in scope,

they should be easy to write and execute, and their effectiveness depends on

what the programmer considers to be useful. The tests are intended for the

use of the programmer. Unit tests shouldn't have dependencies on outside

systems.

An integration test is done to demonstrate that different pieces of the system

work together. Integration tests cover whole applications, and they require

much more effort to put together. They usually require resources like

database instances and hardware to be allocated for them. The integration

tests do a more convincing job of demonstrating the system works (especially

to non-programmers) than a set of unit tests .

System tests test the entire system. It is set of test carried out by test engineer

against the software(system) developed by developer. In system testing the

complete system is configured in a controlled environment and test cases are

created to simulate the real time scenarios that occurs in a simulated real life

test environment. The purpose of system testing is to validate an application

and completeness in performing as designed and to test all functions of the

system that is required in real life. the most popular approach of system

testing is Black Box testing.

Jharsuguda Engineering School Page 106

6.5 Unit Testing

Unit testing or module testing of different units or modules of a system in

isolation.

 Unit testing

 Fig. 6.1 Unit testing

Unit testing is undertaken when a module has been coded and successfully

reviewed. The purpose of testing is to find and remove the errors in the

software as practical. The numbers of reasons in support of unit testing are:

 The size of a single module is small enough that we can locate an

error fairly easily.

 Confusing interactions of multiple error is widely different parts of

 the software are eliminated.

Driver and Stub Modules

In order to test a single module, we need a complete environment to provide

all that is necessary for execution of the module. We will need the following

in order to be able to test the module:

o The procedures belonging to other modules that the module

under test calls.

o Nonlocalb data structures that the module accesses.

o A procedure to call the function of the module under test with

appropriate parameters.

Jharsuguda Engineering School Page 107

Stubs and drivers are design to provide the complete for a module.

 Global Data

A stub procedure is a dummy procedure that has the same I/O parameters as

given procedure but has a highly simplified behaviour. A driver module

would contain the no local data structure accessed by the module under test,

and would also have the code to call the different function of the module with

appropriate parameter values.

6.6 Methods of Black –Box Testing

In the black-box testing, test cases are design from an examination of the

input/output values only and no knowledge of design or code is required.

Two main approaches to design black-box test cases are:

 Equivalence class Partitioning

 Boundary value analysis

Fig. 6.2 Unit testing with the help of driver and stub module

Driver Module

Module under test

Stub Module

Jharsuguda Engineering School Page 108

6.7 Equivalence class Partitioning and Boundary Value
 Analysis

Equivalence Class Partitioning

 In the equivalence class partitioning approach, the domain of input values to

a program is partitioned into a set of equivalence classes. The partitioning is

done such that the behavior of the program is similar to every input data

belonging to the same equivalence class. The main idea behind defining the

equivalence classes is that testing the code with any one value belonging to

an equivalence class is as good as testing the software with any other value

belonging to that equivalence class. Equivalence classes for a software can be

designed by examining both the input and output data. Guidelines for

designing the equivalence classes are:

i) If the input data values to a system can be specified by a range of values,

then one valid and two invalid equivalence classes should be defined.

ii)If the input data assumes values from a set of discrete members of some

domain, then one equivalence classes for valid input values and another for

invalid input values should be defined.

Example – Suppose we have to develop a software that can calculate the

square root of an input integer . The value of the integer lies between 0 and

5000.

As the input domain of such software is 0 to 5000, so the equivalence class

Of the software will be 0 to 5000 .This equivalence class can be partitioned

into the following three equivalence classes

1. equivalence classes 1-The input integers whose value is less then

0.(invalid)

2. equivalence classes 2-The input integers whose value lies between 0

and 5000.(valid)

Jharsuguda Engineering School Page 109

3. equivalence classes 3- The input integers whose value is greater than

5000.(invalid).

So accordingly the following test cases are designed

Test case1=(-5,3000,7001), Test case2=(-20,100,5050),

Test case3=(-6,4000,9000)

Boundary Value Analysis

Boundary Value Analysis concentrates on the behavior of the system on its

boundaries of its input variables. The boundary of a variable includes the

maximum and the minimum valid value it is allowed attain in the system. It

may be an input or output or even some internal future or variable of the

system that captures some information of the system. Behavior of the system

at its boundaries is tested under boundary value analysis. Boundary value

analysis-based test suite design involves designing test cases using the values

at the boundary of different equivalence classes.

EX:-For the above software that calculates the square root of integer values

in the range between 0 and 5000 the test case can be designed as follows i.e.

{0,-1,5000,5001}

Summary of the Black-box test suite Design

• Examine the input and output values of the program.

• Identify the equivalence classes.

• Pick the test cases corresponding to equivalence class testing and

boundary value analysis.

6.8 Methodologies for White –Box Testing

 White –Box testing is also known as transparent testing. It is a test case

design method that uses the control structure of the procedural design to

Jharsuguda Engineering School Page 110

derive test cases. It the most widely utilized unit testing to determine all

possible path with in a module, to execute all looks and to test all logical

expressions. This form of testing concentrate on procedural detail.

The general outline of the white-box testing process is:

 Perform risk analysis to guide entire testing

 process.

 Develop a detailed test plan that organizes the subsequence testing

process.

 Prepare the test environment for test execution.

 Execute test cases and communicate the results.

 Prepare a report

6.9 Different white box methodologies: statement coverage
branch coverage, condition coverage, path coverage, data flow
based testing and mutation testing.

Statement Coverage

This statement coverage strategy aims to design test cases so that every

statement in a program is executed at least once. The principle idea

governing the statement coverage strategy is that unless a statement is

executed there is no way to determine whether an error exist in that statement

unless a statement is executed, we cannot observe whether it causes failure

due to some illegal memory access, wrong result computation etc.

Jharsuguda Engineering School Page 111

Example:

 Consider Euclid’s GCD computation algorithm:

 Int compute_gcd(x,y)

 Int x,y;

 {

 1 While (x != y) {

 2 If (x > y) then

 3 x = x − y;

 4 else y = y – x;

 5 }

 6 return x;

 }

Design of test cases for the above program segment

Test case1 Statement executed

x=5,y=5 1,5,6

Test case2 Statement executed

x=5,y=4 1,2,3,5,6

Test case3 Statement executed

x=4,y=5 1,2,4,5,6

so the test set of the above algorithm will be

{(x=5,y=5),(x=5,y=4),(x=4,y=5)}.

Branch Coverage

 In the branch coverage-based testing strategy, test cases are designed to

make each branch condition assume true and false value in turn. Brach

testing is also known as edge testing, which is stronger than statement

coverage testing approach.

Jharsuguda Engineering School Page 112

Example : As the above algorithm contains two control statements such as

while and if statement, so this algorithm has two number of branches. As

each branch contains a condition, therefore each branch should be tested by

assigning true value and false value respectively. So four number of test

cases must be designed to test the branches.

Test case1 x=6,y=6

Test case2 x=6,y=7

Test case3 x=8,y=7

Test case4 x=7,y=8

so the test set of the above algorithm will be

{(x=6,y=6),(x=6,y=7),(x=8,y=7),(x=7,y=8)}.

Condition Coverage

In this structural testing, test cases are designed to make each component of a

composite conditional expression assumes both true and false values. For

example, in the conditional expression ((C 1 AND C 2) OR C 3), the

components C1,C2 andC3 are each made to assume both true and false values.

Condition testing is a stronger testing strategy than branch testing and branch

testing is a stronger testing strategy than the statement coverage- based

testing.

Path Coverage

The path coverage-based testing strategy requires designing test cases such

that all linearly independent paths is the program are executed at least once.

A linearly independent path can be defined in the terms of the control flow

graph (CFG) of a program.

Control Flow Graph (CFG)

A control flow graph describes the sequence in which the different

instructions of a program get executed. The flow graph is a directed graph in

which nodes are either entire statement or fragments of a statement and edges

Jharsuguda Engineering School Page 113

represents flow of control. An edge from one node to another exists if the

execution of the statement representing the first node can result in the

transfer of control to the other node.

A flow graph can easily be generated from the code of any problem.

int computer_gcd(int x, int y) {

1 while(x!=y) {

2 if(x>y) then

3 x=x-y;

4 Else y-y-x;

5 }

6 Return x;

}

1

2

3
4

5

6

Fig. 6.3 Control Flow Graph

Jharsuguda Engineering School Page 114

Path

A path through a program is a node and edge sequence from the starting node

to a terminal node of the control flow graph of a program.. A program can

have more than one terminal nodes when it contains multiple exit or return

type of statements.

McCabe’s Cyclomatic Complexity Metric

Cyclomatic complexity defines an upper bound on the number of

independent paths in a program.

Given a control flow graph G of a program. Each node of the graph

represents a command or a statement of the program and each edge

represents the flow of execution between statements or nodes. For a control

flow graph with E number of edges and N number of nodes, the cyclomatic

complexity can be computed as

 M = E – N + 2P

 Where P is the number of connected components in the graph.

Control flow graph of a sequential program is a single component graph.

Hence, for any sequential program

 M = E – N + 2

Jharsuguda Engineering School Page 115

Example:

Number of Edges = E = 7
Number of Nodes = N = 6
The value of cyclomatic complexity is

 V(G) = E – N + 2
 = 7 – 6 + 2
 = 3
Data Flow – Based Testing

The data flow – based testing method selects the test paths of a program

according to the location of the definitions and use of the different variables

in a program.

1

2

3
4

5

6

Fig. 6.4 Control Flow Graph

Jharsuguda Engineering School Page 116

Consider a program P. For a statement numbered S of P, let

DEF (S) = {X | Statement S contains a definition of X}, and

USES (S) = {X| Statement S contains a use of X}

For the statement S: a = b+c ; DEF (S) ={ a}, USES(S) ={b,c}

The definition of variable X at statement S is said to be live at statement SI,

If there exist a path from statement S to statement SI which doesn’t contain

any definition of X.

Mutation Testing

In mutation testing, the software is first tested by using an initial test suite

built of from different white – box testing strategies. After the initial testing

is complete, mutation testing is taken up. The idea behind mutation testing is

to make a few arbitrary changes to a program at a time. Each time the

program is changed, it is called a mutated program and the change effected is

called a mutant. A mutated program is tested against the full test suite of the

program. If there exists at least one test case in the test suite for which a

mutant gives an incorrect result, then the mutant is said to be dead. If a

mutant remains alive even after all the test cases have been exhausted, the

test data is enhanced to kill the mutant.

A major disadvantage of the mutation – based testing approach is that it is

computationally very expensive since a large number of possible mutants can

be generated.

Since mutation testing generates large mutants and requires us to each mutant

with the full test suite. It is not suitable for manual testing.

Debugging

Once errors are identified, it is necessary to first locate the precise program

statements responsible for the errors and then to fix them.

Jharsuguda Engineering School Page 117

6.10 Debugging Approaches

a. Buffer Force Method

This is the most common method of debugging, but is the least efficient

method. In this approach, the program is base with print statement to print the

intermediate values with the hope that some of the printed values will help to

identify the statement in error. This approach becomes more systematic with

the use of a symbolic debugger because the values of different variables can

be easily checked.

b. Backtracking

In this approach, beginning from the statement at which an error symptom is

observed, the source code is traced backwards until the error is discovered.

c. Cause Elimination Method

 In this approach, a list of causes which could possibly have contributed to

 the error symptom is developed and tests are conducted to eliminate each

 cause.

d. Program Slicing

This technique is similar to back tracking. However, the search space is

reduced by defining slices.

6.11 Debugging Guidelines

 Debugging is often carried out by programmers based on their

ingenuity.

 Many a times, debugging requires a thorough understanding of the

program design.

 Debugging may sometimes even require full redesign of the system.

 One must be beware of the possibility that any one error correcting

many introduce new errors.

Jharsuguda Engineering School Page 118

6.12 Need for Integration Testing

The objective of integration testing is to test the module interfaces in order to

ensure that there are no errors in the parameter passing, when one module

invokes another module. During integration testing different modules of a

system are integrated in a planned manner using an integration plan. The

integration plan specifies the steps and the order in which modules are

combined to realize the full system. After each integration step, the partially

integrated system is tested.

 Fig.6.5 Integration Testing

Anyone or a mixture of the following approaches can be used to develop the

test plan:

o Big – bang approach

o Top – down approach

o Bottom – up approach

o Mixed approach

o Big – bang approach

Big – Bang Approach

 In this approach, all the modules of the system are simply put together and

tested. This technique is practicable only for small systems. The main

problem with this approach is that once an error is found during the

integration testing, it is very difficult to localize the error as the error may

potentially belong to any of the modules being integrated. Debugging errors

reported during big–bang integration testing are very expensive.

Jharsuguda Engineering School Page 119

Top – Down Approach

Top – down integration proceeds down the invocation hierarchy, adding are

module at a time until an entire tree level is integrated and it elements the

need for drivers.

In this approach testing can start only after the top-level modules have been

coded and unit tested.

A disadvantage of the top- down integration testing approach is that in the

absence of lower –level routines , many times it may become difficult to

exercise the lower–level routines, many times it may become difficult to

exercise the top- level routines in the desired manner since the lower – level

routines perform several low level functions such I/O.

Bottom – up Integration Testing

In bottom-up testing, each subsystem is tested separately and then the full

system is tested. A subsystem might consist of many modules which

communicated among each other through well– defined interfaces. The

primary purpose of testing each subsystem is to test the interface among

various modules making up the subsystem. Both control and data interfaces

are tested. Advantages of bottom – up integration testing is that several

disjoint subsystems can be tested simultaneously.

A disadvantage of bottom – up testing is the complexity occurs when the

system is made up of a large number of small subsystems.

Mixed Integration Testing

A mixed(also called sandwiched) integration testing follows a combination of

top – down and bottom – up testing approaches. In this approach testing can

start as and when modules become available.

Jharsuguda Engineering School Page 120

6.13 System Testing: Alphas, Beta and Acceptance Testing

System tests are designed to validate a fully developed system to assure that

it meets its requirements. Three kinds of system testing are:

• Alpha testing

• Beta testing

• Acceptance testing

Alpha Testing

Alpha testing refers to the system testing carried out by the team within the

developing organization.

Beta testing

Beta testing is the system testing performed by a select group of friendly

customers.

Acceptance Testing

Acceptance testing is the system testing performed by the customer to

determine whether to accept or reject the delivery of the system.

The system test cases can be classified into functionality and performance

test case. The functionality test are designed to check whether the software

satisfies the functional requirements as documented in the SRS document.

The performance tests test the conformance of to the system with the

nonfunctional requirements of the system.

Performance Testing

Performance testing is carried out to check whether the system meets the non

– functional requirements identified in the SRS document. The types of

performance testing to be carried out on a system depend on the different

nonfunctional requirements of the system document in the SRS document.

All performance tests can be considered as black – box tests.

Jharsuguda Engineering School Page 121

6.15 Need for Stress Testing and Error Seeding

Stress Testing

Stress testing is also known as endurance testing. Stress testing evaluated

system performance when it is stressed for short periods of time. Stress tests

are black – box tests which are designed to impose a range of abnormal and

even illegal input conditions so as to stress the capabilities of the software.

Input data volumes, input data rate, processing time, utilization of memory

are tested beyond the designed capacity.

 Stress testing is especially important for systems that usually operate below

the maximum capacity but are severely stressed at some peak demand hours.

 Example : If the nonfunctional requirement specification states that the

response time should not be more than 20 seconds per transaction when 60

concurrent users are working, then during the stress testing the response

time is checked with 60 users working simultaneously.

Volume Testing

Volume testing checks whether the data structures (buffers, arrays, queues,

stacks etc.) have been designed to successfully handle extraordinary

situations.

Example : A compiler might be tested to check whether the symbol table

overflows when a very large program is compiled.

Configuration Testing

Configuration testing is used to test system behavior in various hardware and

software configuration specified in the requirements.

Compatibility Testing

This type of testing is required when the system interfaces with external

systems such as databases, servers etc. Compatibility aims to check

Jharsuguda Engineering School Page 122

whether the interface functions perform as required. For instance, if the

system needs to communicate with a large database system to retrieve

information, compatibility testing is required to test the speed and

accuracy of data retrieval.

Regression Testing

Regression testing is performed in the maintenance or development phase.

This type of testing is required when the system being tested is an upgradation

of an already existing system to fix some bugs or enhance functionality,

performance etc.

Recovery Testing

Recovery testing tests the response of the system to the presence of faults or

loss of power, devices, services data etc. For example, the printer can be

disconnected to check if the system hangs.

Maintenance Testing

Maintenance testing addresses the diagnostic programs and other procedures

that are required to be developed to help implement the maintenance of the

system.

Documentation Testing

Documentation is checked to ensure that the required user manual,

maintenance manuals and technical manuals exist and are consistent.

Usability Testing

Usability testing pertains to checking the user interface to see if it meets all

the user requirements. During usability testing, the display screens, messages,

report formats and other aspects relating to the user interface requirements are

tested.

 Error Seeding

Error seed can be used to estimate the number of residual errors in a system.

Error seeding seeds the code with some known errors. The number of seeded

error detected in the course of standard testing procedure is determined.

Jharsuguda Engineering School Page 123

These values in-conjunction with the number of unseeded errors can be used

to predict:

i)The number of errors remaining in the product

ii) The effectiveness of the testing method

Let n be the total number of errors in the system and let “n” number of these

errors are detected during testing.

Let “S” be the total number of seeded errors and let “s” be the number of

these errors are detected during testing.

n /N = s/ S

=> N = S * n /s

=> (N-n) = n(S-s) /S

6.16 General Issues Associated with Testing

Some general issues associated with testing

i)Test documentation

ii) Regression testing

Test Documentation

A piece of documentation which is generated towards the end of testing is

the test summary report. The report normally covers each subsystem and

represents a summary of tests which have been applied to the subsystem. It

will specify how many tests have been applied to a subsystem. It will

specify how many tests have been successful, how many have been

unsuccessful, and the degree to which they have been unsuccessful.

Regression Testing

Regression testing does not belong to either unit testing, integration testing

or system testing. Regression testing is the practice of running an old test

suite after each change to the system or after each bug fix to ensure that no

new bug has been introduced as a result of this change made or bug fixed.

Jharsuguda Engineering School Page 124

Chapter-7
Understanding the Importance of S/W Reliability

7.1 Importance of software reliability
7.2 Distinguish between the different reliability metrics.
7.3 Reliability growth modeling.
7.4 Characteristics of quality software.
7.5 Evolution of software quality management system.
7.6 Importance, requirement and procedure to gain ISO 9000
certification
 for software industry.
7.7 SEI capability maturity model.

7.8 Compare between ISO 9000 certification.

7.1 Importance of Software Reliability

 Reliability of a software product can be defined as the probability of the

product working correctly over a given period of time. A software product

having a large number of defects is unreliable. Reliability of a system

improves it the number of defects in it is reduced. The reliability of a product

depends on the both the number of errors and the exact location of the errors.

 Reliability also depends upon how the product is used (i.e. on its execution

 profile). Different users use a software product in different ways. So defects

 which show up for one user may not show up for another user.

 Software Reliability and Hardware Reliability

Reliability behavior for hardware and software is very different. Hardware

failures are due to component wear and tear. If hardware failure occurs one

has to either replace or repair the failed part. A software product would

continue to fail until the error is tracked down and either the design or the

code is changed. For this reason, when level that existed before the failure

accrued, whereas when a software failure is repaired, the reliability nay either

increase or decrease.

Jharsuguda Engineering School Page 125

There are three phases in the life of any hardware component i.e. burn in,

useful life and wear out.

In burn in phase, failure rate is quite high initially as it starts decreasing as

the faulty components are identified and removed. The system then enters its

useful life.

During useful life period, failure rate is approximately constant. Failure rate

increases in wear- out phase due to warning out components. The best period

is useful life period. The shape of this curve a “both- tub” and it is also

known as both tub curve.

For software the failure rate is highest during integration and testing phases.

During the testing phase more and more errors are identified and moved

resulting in a reduced failure rate. This errors removal continues at a slower

speed during the useful life of the product. As the software becomes absolute,

no more error correction occurs and the failure rate remains unchanged.

7.2 Distinguish between the Different Reliability Metrics

The reliability requirements for different categories of software products may

be different for this reason, it is necessary that the level of reliability required

for a software product should be specialized in the SRS document. Some

reliability metrics which can be used to quantity the reliability of software

products are:

 Rate of Occurrence of Failure (ROCOF)

ROCOF measures the frequency of occurrence of unexpected behaviour (i.e.

failures). The ROCOF measure of a software product can be obtained by

observing the behaviour of a software product in operation over a specified

time interval and then calculating the total number of failures during this

interval.

Jharsuguda Engineering School Page 126

 Probability of Failure ON Demand (POFOD)

POFOD measures the likelihood of the system failure when a service request

is made. For example a POFOD of 0.001 would mean that 1 out of every

1000 service requests would result in a failure.

 Availability

Availability of a system is a measure of how likely will the system be

available for use over a given period of time. This metric not only considers

the number of failures occurring during a time interval, but also takes into

account the repair time (downtime) of a system when a failure occurs. In

order to intimately, it is necessary to classify various types of failures.

Possible classifications of failures are:

 Transient: Transient failures occur only for certain input values while

 invoking a function of the system.

Permanent: Permanent failures occur for all input values while invoking a

 function of the system.

Recoverable: When recoverable failures occur, the system recovers with or

 without operator intervention.

Unrecoverable: In unrecoverable failures, the system may need to be

 restarted.

Cosmetics: These classes of failures cause only minor irritations, and do

 not lead to incorrect results.

Mean TIME TO Failure (MTTF)

MTTF is the average time between two successive failures, observed over a

large number of failures. To measure MTTF, we can record the failure data

for n failures.

 Mean Time to Repair (MTTR)

Once failure occurs, some time is required to fix the error. MTTR measures

the average time it takes to track the errors causing the failure and then to

fix them.

Jharsuguda Engineering School Page 127

 Mean Time Between Failures (MTBF)

 MTBF = MTTF+MTTR

Thus, MTBF Of 300 hours indicates that once a failure occurs, the next

failure is expected to occur only after 300 hours. In this case, the time

measurements are real time and not the execution times as in MTTF.

 Software Quality

 The objective of software engineering is to produce good quality

 maintainable software in time and within budget. That is a quality product

 does exactly what the users want it to do. The modern view of quality

 associates a software product with several factors such as:

Portability

A software product is said to be portable, if it can be easily made to work in

different operating system environments in different machines with other

software products etc.

 Reusability

 A software product has good reusability, if different modules of the product

can easily be reused to develop new product.

 Correctness

 A software product is correct, if different requirements as specified in the

 SRS document have been correctly implemented,

 Maintainability

 A software product is maintainable, if errors can be easily corrected as and

 when they show up , new functions can be easily added to the product and

 the functionality of the product can be easily modified etc.

 7.3 Reliability Growth Modeling

 A reliability growth model is a mathematical model of how

software reliability improves as errors are detected and repaired. A

reliability growth model can be used to predict when a particular

Jharsuguda Engineering School Page 128

level of reliability is likely to be attained. Thus, reliability growth

modeling can be used to determine when to stop testing to attain a

given reliability level. Two very simple reliability growth models

are :

Jelinski and Moranda Model

The simplest reliability growth model is a step function model

where it is assumed that the reliability increases by a constant

increment each time an error is detected and repaired. However this

simple model of reliability which implicitly assumes that all errors

contribute equally to reliability growth, is highly unrealistic.

 Fig.7.1 Step function model of reliability growth

Littlewood and Verall's Model

This model allows for negative reliability growth to reflect the fact that when

a repair is carried out, it may introduce additional errors. It also models the

fact that as errors are repaired, the average improvement in reliability per

repair decreases. It treats an error's contribution to reliability improvement to

be an independent random variable having gamma distribution. This

Time

ROCOF

Jharsuguda Engineering School Page 129

distribution models the fact that error corrections with large contributions to

reliability growth are removed first. This represents diminishing return as

test continues.

7.4 Characteristics of Quality Software

The objective of software engineering is to produce good quality

maintainable software in time and within budget. That is, a quality product

does exactly what the users want it to do. The modern view of quality

associates a software product with several quality factors such as :

Portability: A software product is said to be portable, if it can be easily

made to work in different operating system environments, in different

machines, with other software products etc.

Usability: A software product has good usability, if different categories of

users can easily invoke the functions of the product.

Reusability: A software product has good reusability, if different modules of

the product can easily to develop new products.

Correctness: A software product is correct, if different requirements as

specified in the SRS document have been correctly implemented.

Maintainability: A software product is maintainability, if errors can be

easily corrected as and when they show up, new functions can be easily

added to the product, and the functionalities of the product can easily

modified, etc.

7.5 Evolution of Software Quality Management System

 Software Quality Management System

 Issues associated with a quality system are:
• Management structural and individual responsibilities

 A quality system is actually the responsibility of the organization as a

 whole.

Jharsuguda Engineering School Page 130

 However, many organization have a separate quality department to perform

 several quality system activities. The quality system of an organization

 should have the support of the top management

• Quality system activities

 Auditing of the projects

 Review of the quality system

 Development of standards, procedures and guidelines etc.

 Production of reports for the top management summarizing

the effectiveness of the quality system in the organization.

 A good quality system must be well documented.

 Evolution of Quality Systems

 Quality system have rapidly evolved over the last 5 decades. The quality

 systems of organisation have undergone through 4-stages of evolution as :

Fig. 7.2Evolution of quality system and the corresponding shift in the

quality paradigm.

• Quality control focuses not only on detecting the defective product &

eliminating them. But also on determining the causes behind the defects.

Quality Assurance Method

Inspection

Quality Control(QC)

Quality Assurance

Total Quality
Management(TQM)

Quality Paradigm

Product assurance

Process Assurance

Jharsuguda Engineering School Page 131

• The quality control aims at correcting the causes of errors & not just

rejecting the defective products.

The basic premises of modern quality assurance is that if an organizations

processes are good and are followed rigorously then the products are

bound to be of good quality.

 The modern quality paradigm includes some guidance for recognising,

defining, analysing & improving the production process.

 Total quality management (TQM) says that the process followed by an

 organisation must be continuously improve through process measurement.

 7.6 Importance, Requirement and Procedure to Gain ISO
 9000 Certification for Software Industry

 ISO (International Standards Organization) is a consortium of 63 countries

 established to formulate and foster standardisation. ISO published its 9000

 series of standards in 1987.

 The ISO 9000 standard specifies the guidelines for maintaining a quality

 system. ISO 9000 specifies a set of guidelines for repeatable and high

 quality product development.

 ISO 9000 is a series of three standards: ISO 9001, ISO 9002, and ISO

 9003.

 ISO 9001: This standard applies to the organisations engaged in design,

 development, production, and servicing of goods. This standard is

 applicable to most software development organisations.

 ISO 9002: This standard applies to those organisations which do not

 design products but are only involved in production. Examples include

 steel and car \ manufacturing industries.

 ISO 9003: This standard applies to organisations involved only in

 installation and testing of the products.

Jharsuguda Engineering School Page 132

 Requirement of ISO 9000 Certification

 Confidence of customers in an organisation increases when the

organisation qualifies for ISO 9001 certification.

 ISO 9000 requires a well-documented software production process.

 ISO 9000 makes the development process focused, efficient, and

cost-effective.

 ISO 9000 certification points out the weak points of an organization

and recommends remedial action.

 ISO 9000 sets the basic framework for the development of an

optimal process.

 Procedure to gain ISO 9000 Certification

 An organisation intending to obtain ISO 9000 certification applies to a ISO

 9000 registrar for registration. The ISO 9000 registration process consists

 of the following stages:

 Application: Once an organisation decides to go for ISO 9000

certification, it applies to a register for registration.

 Pre-assessment: During this stage, the registrar makes a rough

assessment of the organisation.

 Document Review and Adequacy of Audit : During this stage, the

registrar reviews the documents submitted by the organisation and

makes suggestions for possible improvements.

 Compliance audit: During this stage, the registrar checks whether the

suggestions made by it during review have been complied with by the

organisation or not.

 Continued Surveillance: The registrar continues to monitorthe

organisation, though periodically.

Jharsuguda Engineering School Page 133

7.7 SEI Capability Maturity Model (SEI CMM)

SEI Capability Maturity Model was proposed by Software Engineering

Institute of the Carnegie Mellon University, USA. SEI CMM classifies

software development industries into the following five maturity levels. The

different levels of SEI CMM have been designed so that it is easy for an

organization to slowly build its quality system beginning from scratch.

Level 1: Initial. A software development organization at this level is

characterized by ad hoc activity. Very few or no processes are defined and

followed. Since software production processes are not defined, different

engineers follow their own process and as a result the development efforts

become chaotic. It is called chaotic level.

Level 2: Repeatable. At this level, the basic project management practices

such as tracking cost and schedule are established. Size and cost estimation

techniques like function point analysis, COCOMO etc. are used.

Level 3: Defined. At this level, the processes for both management and

development activities are defined and documented. There is a common

organization-wide understanding of activities, roles and responsibilities. The

processes though defined, the process and the product qualities are not

measured. ISO 9000 aims at achieving this level.

Level 4: Managed: At this level, the focus is on software metrics. Two

types of metrics are collected. Product metrics measure the characteristics of

the product being developed, such as its size, reliability, time complexity,

understandability etc. Process metric reflect the effectiveness of the process

being used, such as the average defect correction time, productivity, the

average number of defects found per hour of inspection, the average number

of failures detected during testing per LOC, and so forth

Level:5 Optimizing: At this stage, the process and the product metrics are

collected. Process and Product measurement data are analyzed for continuous

process improvement.

Jharsuguda Engineering School Page 134

7.8 Compare between ISO 9000 Certification and SEI/CMM

♦ ISO 9000 is awarded by an international standards body. ISO 9000
certification can be quoted by an organization in official documents.
However, SEI CMM assessment is purely for internal use.

♦ SEI CMM was specifically developed for software industry alone.

♦ SEI CMM goes beyond quality assurance and prepares on organization
to ultimately achieve TQM. ISO 9000 aims at level 3 of SEI/CMM
model

Jharsuguda Engineering School Page 135

Chapter-8

Understanding the Computer Aided Software
Engineering (CASE)

8.1 Briefly explain CASE benefits of CASE.
8.2 Briefly explain the building blocks for CASE
8.3 CASE support in software life cycle
8.4 List the different CASE tools.
8.1 Briefly explain CASE benefits of CASE.

8.1 Briefly Explain CASE Benefits of CASE

The term “Computer-Aided Software Engineering “can refer to the software

used for the automated development of system software i.e. computer code.

The CASE functions include analysis, design and programming. CASE tools

automate methods for designing, documenting and producing structured

computer code in the desired programming language. Many CASE tools are

now available. Some CASE tools assist in phase-related takes such as

specification, structured analysis, design , coding , testing etc. and some other

CASE tools are related to non-phase activities such as project management

and configuration management. The primary objectives of deploying CASE

tools are

• To increase productivity

• To produce better quality software at lower cost

Two key ideas of computer-aided software system Engineering are :

• The harboring of computer assistance in software development and or

software maintenance process.

Jharsuguda Engineering School Page 136

• An engineering approach to the software development and or

maintenance.

Some typical CASE tools are

• Configuration management tools

• Data modeling tools

• Model transformation tools

• Program transformation tools

• Source code generation tools

• Unified modeling language

 CASE Environment

CASE tools are a class of software that automates many of the activities

involved in various life cycle phases. Since CASE environments are

classified based on the focus :

• Toolkits

• Language-centered

• Integrated

• Fourth generation

• Process-centered

Since different tools covering different stages share common information. It

is required that they integrate through some central repository to have a

consistent view of information associated with the software.

This central repository is usually a data dictionary containing the definitions

of all composite and elementary data items. Through the central repository,

all the CASE tools in a CASE environment share common information

among themselves. Thus a CASE environment facilities the automation of

the step-by-step methodologies for software development.

Jharsuguda Engineering School Page 137

In contrast to a CASE environment a programming environment is an

integrated collection of tools support only the coding phase of software

development. The tools commonly integrated in a programming environment

are a text editor, a compiler and a debugger. The different tools are integrated

to the extent that once the compiler detects an error, the editor automatically

goes to the statements in error and the error statements are highlighted.

Examples of programming environments are Turbo C environment, Visual

Basic, Visual c++ etc.

Central
repository

Coding support
activities

Project
management
facilities

Prototyping

Configuration
management
facilities

Structured
diagram facilities

Consistency and
completeness
analysis

Document
generation

Structured
analysis facilities

Query and report
facilities Transfer facilities

in different
formats

Fig.8.1 A CASE environment

Jharsuguda Engineering School Page 138

 Benefits of CASE

• A key benefit arising use of a CASE environment is cost saving

through all development phases.

• Use of CASE tools leads to considerable improvements to quality.

• CASE tools help produce high quality and consistent document since

the important data relating to a software product are maintained in a

central repository, redundancy in the stored data is reduced and

therefore chances of inconsistence documentation are reduce to a great

extent.

• CASE tools have led to drudgery in a software engineer’s work.

• CASE tools have led to revolutionary cost savings in software

maintenance efforts.

• Use of a CASE environment has an impact on the style of working of a

company, and makes it conscious of structured and orderly approach.

8.2 Briefly Explain the Building Blocks for CASE

Figure 8.2 CASE building blocks

1) Environment Architecture: The environment architecture composed of

the hardware platform and system support.

Jharsuguda Engineering School Page 139

2) Hardware Platform

3) Operating System: Database and object management services.

4) Portability services: Allow CASE tools and their integration framework to

 migrate across different operating systems and hardware platforms

 without significant adaptive maintenance.

5) Integration framework: It is collection of specialized programs that allow

CASE tools to communicate with one another .

 6) CASE Tools : A CASE tool can be used quite effectively, even if it is a

 point solution.

8.3 CASE Support in Software Life Cycle

 CASE tools should support a development methodology, help enforce the

same and provide certain amount of consistency checking between different

phases. The kind of support that CASE tools usually provide in the software

development life cycle are :

a) Prototyping Support

 The prototyping CASE tools requirements are

1. Define user interaction

2. Define the system control flow

3. Store and retrieve data required by the system

4. Incorporate some processing logic

There are several stand-alone prototyping tools. But a tools that integrates

with the data dictionary can make use of entries in the data dictionary, help in

populating the data dictionary and ensure the consistency between the design

data and the prototype.

A good prototyping tool should support the following features :

• Since one of the main uses of a prototyping CASE tools is graphical

Jharsuguda Engineering School Page 140

user interface (GUI) development, a prototyping CASE tool should

support the user to create a GUI using a graphics editor. The user

should be allowed to define all data entry forms, menus and controls.

• It should integrate with the data dictionary of a CASE environment.

• If possible, it should be able to integrate with the external user-defined

modules written in C or in some popular high level programming

languages.

• The user should be able to define the sequence of states through which

a created prototype can run. The user should also be allowed to control

the running of the prototype.

b) Structured Analysis and Design

A CASE tool should support one or more of the structured analysis and

design techniques. It should support effortlessly, making of the analysis

and design diagrams. It should also support making of the fairly complex

diagrams and preferably through a a hierarchy of levels. The CASE tools

should provide easy navigation through different levels of design and

analysis. The tools must support completeness and consistency checking

across the design and analysis and through all levels of analysis

hierarchy.

c) Code Generation

As for as code generation is concerned, the general expectation from a

CASE tool is quite low. Pragmatic support expected from a CASE tools

during code generation phase are :

o The CASE tools should support generation of module skeletons

or templates in one or more popular programming languages. It

should be possible to include copyright message, brief

Jharsuguda Engineering School Page 141

description of the module, author name and the date of creation

in some selectable format.

o The tools should generate records, structures, class, definitions

automatically from the contents of the data dictionary in one or

more popular programming languages.

o It should generate database tables for relational database

 management systems.

o The tools should generate code for user interface form

prototype definitions for X-windows and MS Window-based

applications.

d) Test CASE Generator

 The CASE tool for test case generation should have the following

 features :

• It should support both design and requirement testing.

• It should generate test set reports in ASCII format which can be

directly imported into the test plan document.

8.4 List the Different CASE Tools

♦ Business process engineering tools : Represent business data
objects,
 their relationships, and flow of the data objects between company
 business areas

♦ Process modeling and management tools: Represent key
elements of processes and provide links to other tools that provide
support to defined process activities.

♦ Project planning tools: Used for cost and effort estimation, and
project scheduling .

Jharsuguda Engineering School Page 142

♦ Risk analysis tools: Help project managers build risk tables by
providing detailed guidance in the identification and analysis of
risks.

♦ Metrics and management tools: Management oriented tools
capture project specific metrics that provide an overall indication of
productivity or quality, technically oriented metrics determine
metrics that provide greater insight into the quality of design or
code.

♦ Documentation tools: Provide opportunities for improved
productivity by reducing the amount of time needed to produce
work products

♦ System software tools: Network system software, object
management services, distributed component support, and
communications software.

♦ Quality assurance tools: Metrics tools that audit source code to
determine compliance with language standards or tools that extract
metrics to project the quality of software being built.

♦ Database management tools: RDMS and OODMS serve as the
foundation for the establishment of the CASE repository

♦ Analysis and design tools: Enable the software engineer to create
analysis and design models of the system to be built, perform
consistency checking between models.

♦ Prototyping tools: Enable rapid definition of screen layouts, data
design, and report generation.

♦ Programming tools: Compilers, editors, debuggers, OO
programming environments, fourth generation languages, graphical
programming environments, applications generators, and database
query generators.

♦ Integration and testing tools

• Data acquisition
• get data for testing

• Static measurement

Jharsuguda Engineering School Page 143

• analyze source code without using test cases
• Dynamic measurement

• analyze source code during execution
• Simulation

• simulate function of hardware and other externals)
• Test management
• Cross-functional tools

 Reference Books

1. Fundamentals of Software Engineering

 By

 Rajib Mall

 Prentice Hall of India

2. Software Engineering A Practitioner’s Approach

 By

 Roger S. Pressman

 McGraw-Hill International Edition

Jharsuguda Engineering School Page 144

Model Question for Software Engineering

Model Question carrying 2 marks each.

1. What is a prototype?

2. What is project risk?

3. Define software reliability.

4.Differentiiate between verification and validation .

5. What do mean by debugging?

6.Distinguish between alpha and beta testing

7.What is Direct Manipulating Interface?

8.What do you mean by SRS ?

9.What is software reliability?

10. What is a structure chart?

11. What do you mean by CASE?

12.What is project planning?

13.What is staffing?

14. what is scheduling?

15. What is DFD?

16. Why should we use a life cycle model?

17Define object oriented concept.

18.Write down the structured analysis methodology.

19.Define coding standards and guidelines.

20. What is GUI?

21.What is function point metric?

Jharsuguda Engineering School Page 145

22.Which software producted is treated as organic type?

23. Which software product is treated as embedded type?

24.What do you mean by coupling.

25. What is software engineering.

Model Question carrying 6 marks each

1. What is software reliability? Discuss the three software reliability metrics.

2. Describe how to get 9000 certification.
3.Explain Transform Analysis and Transaction Analysis.
4.What are the characteristics of good SRS document?
5.Discuss the project estimation technique.
6.Explain the main aspects of GUI.
7. Write down the rules for UID.
8.What is CASE tool? What are the benefits of CASE?
9.Differentiate between object oriented and function oriented software
design?
10.Distinguish between cohesion and coupling. Classify cohesiveness.
11.Explain the features of spiral model.
12.Write down the effect of schedule change on cost.
13.Write down the work Breakdown Structure of scheduling.
14.Explain Activity networks of Scheduling.
15.Write down the concept of Gantt Chart & PERT Chart on scheduling.
16.Explain the software design approaches.
17.What is DFD? Write down the list of symbols used in DFD.
18. Explain code inspections.
19. Explain software documentation.
20. Explain debugging approaches & guidelines.
21. Explain the need for stress testing.
22. Explain error seeding of software testing.
23.Write down the importance of software reliability.
24.Explain reliability growth modelling
25. Write down the characteristics of quality software. Write down the
evolution of software quality management system.
26.Briefly explain the building blocks for CASE.
27.Write down the limitations of DFD.
28. Explain code inspections methodology.
29.Explain software documentation.

Jharsuguda Engineering School Page 146

30. Define system testing and explain various types of system testing
approaches.

Model Question carrying 8 marks each.

1.What is cohesion and coupling? Explain the different types of cohesion and
coupling.
2.Discuss the prototype model of software development.
3.Discuss about SEI Capability Maturity Model.
4. Explain UID Processs and models.
5. Explain interface design activities, defining interface objects, actions and
the design issues.
6.Compare the various types of interface.
7.What is COCOMO model of estimation? Discuss the features of different
COCOMO models.
8. What is cyclomatic complexity? Why it is used? Explain how cyclomatic
complexity is computed? Give an illustration for this.
9. Explain the project estimation technique.
 10. Explain the different phases of classical waterfall model.
11. Explain the different methods of white box testing techniques.
12.What is integration testing? Explain the different methods of integration
testing.
13.Explain the steps of prototyping model with a diagram.
14.Write down the different steps of spiral model and explain.
15. Write down the responsibilities of a software project manager in software
Engineering.
16.Explain organization structure with diagram.
17. Explain team structure with diagram.
18.Explain the classification of coupling.
19. Explain 0 level, 1 level, 2 level DFD with an example.
20.Write down the uses of structure chart & structured design.
21. Explain the principles of transformation of DFD to a structure chart.
22. Explain the different types user Interface so that the user can easily
interact with the software.
23.Differentiate between object oriented and function oriented design
approaches.
24. Explain different Black Box testing approaches used for software testing.
25.Explain the different metrics used for software size estimation.

Jharsuguda Engineering School Page 147

26. Write short notes on:
 a. Spiral model
 b. FP based metric
 c. Jensen model for stating level estimation,
 d. project management.
 e. Black box testing
 f. Risk management

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147

