

 Th.3 MICROPROCESSOR &

MICROCONTROLLER

 LEARNING NOTES

Unit-1:Microprocessor (Architecture and
Programming-8085-8-bit)

1.1 Introduction to Microcomputer AND Microprocessor

& distinguish between them.

Microcomputer

A microcomputer can be defined as a small sized, inexpensive, and
limited capability computer. It has the same architectural block
structure that is present on a computer. Present-day
microcomputers are having smaller sizes. Nowadays, they are of
the size of a notebook. But in the coming days also their sizes will
get more reduced as well. Due to their lower costs, individuals can
possess them as their personal computers. Because of mass
production, they are becoming still cheaper. Initially, in the earlier
days, they were not very much powerful. Their internal operations
and instructions were very much limited and restricted. But at
present days, microcomputers have not only multiplied and divide
instructions on unsigned and signed numbers but are also capable
of performing floating point arithmetic operations. In fact, they are
becoming more powerful than the minicomputers and main
computers of yesteryear.

As an example, the Commodore 64 was one of the most popular
microcomputers of its era and is the best-selling model of home
computer of all time.

So a microcomputer is a small, relatively inexpensive computer
with a microprocessor as its central processing unit (CPU). It
includes a single printed circuit board containing a microprocessor,
memory, and minimal input/output(I/O) circuitry mounted. With the
advent of increasingly powerful microprocessors, microcomputers
became popular in the 1970s and1980s. The predecessors to
these computers, mainframes, and minicomputers, were
comparatively much larger and more expensive(though indeed
present-day mainframes such as the IBM System z machines use
one or more custom microprocessors as their CPUs). Also, we can
mention that many microcomputers, in the generic sense, (when
equipped with a keyboard and screen for input and output) are also
personal computers.

Microprocessor

The processor on a single chip is called a Microprocessor which
can process micro-instructions. Instructions in the form of 0sand 1s

are called micro-instructions. The microprocessor is the CPU part
of a microcomputer, and it is also available as a single integrated
circuit. Thus as main components, the microprocessor will have
theControl Unit (CU) and the Arithmetic Logic Unit (ALU) of a
microcomputer. An example is Intel 8085 microprocessor. In
addition to the microprocessor features, a microcomputer will have
the following additional features:

• ROM/PROM/EPROM/EEPROM for storing program;

• RAM for storing data, intermediate results, and final results;

• I/O devices for communication with the outside world;

• I/O ports for communication with the I/O devices.

In the present-day world, Microprocessors are extensively used.
Before the microprocessor’s invention, the logic design was done
by hardware using gates, flip-flops, etc. A mini-computer was too
much costly. With the advent of the microprocessor, logic design
using hardware has been mostly replaced. It provides flexibility
instrumentation where the characteristics of the system can be
changed just by changing the software. Also, new generations of
applications have surfaced, which were not thought of earlier
because of the prohibitive cost of a minicomputer or the complexity
of logic design using hardware.

Some of the applications where microprocessors have been used
are listed below –

• Business applications such as desktop publishing;

• Industrial applications such as power plant control;

• Measuring instruments such as multimeter;

• Household equipment such as washing machine;

• Medical equipment such as blood pressure monitor;

• Defense equipment such as light combat aircraft;

• Computers such as a personal computer.

1.2 Concept of Address bus, Data bus, Control bus & System

Bus

1.3 General Bus structure Block diagram

1.4 Basic Architecture of 8085 (8 bit)
Microprocessor

8085 is pronounced as "eighty-eighty-five" microprocessor. It is an 8-bit microprocessor
designed by Intel in 1977 using NMOS technology.

It has the following configuration −

• 8-bit data bus

• 16-bit address bus, which can address upto 64KB

• A 16-bit program counter

• A 16-bit stack pointer

• Six 8-bit registers arranged in pairs: BC, DE, HL

• Requires +5V supply to operate at 3.2 MHZ single phase clock

It is used in washing machines, microwave ovens, mobile phones, etc.

8085 Microprocessor – Functional Units

8085 consists of the following functional units −

Accumulator

It is an 8-bit register used to perform arithmetic, logical, I/O & LOAD/STORE operations.
It is connected to internal data bus & ALU.

Arithmetic and logic unit

As the name suggests, it performs arithmetic and logical operations like Addition,
Subtraction, AND, OR, etc. on 8-bit data.

General purpose register

There are 6 general purpose registers in 8085 processor, i.e. B, C, D, E, H & L. Each
register can hold 8-bit data.

These registers can work in pair to hold 16-bit data and their pairing combination is like
B-C, D-E & H-L.

Program counter

It is a 16-bit register used to store the memory address location of the next instruction to
be executed. Microprocessor increments the program whenever an instruction is being
executed, so that the program counter points to the memory address of the next
instruction that is going to be executed.

Stack pointer

It is also a 16-bit register works like stack, which is always incremented/decremented by
2 during push & pop operations.

Temporary register

It is an 8-bit register, which holds the temporary data of arithmetic and logical operations.

Flag register

It is an 8-bit register having five 1-bit flip-flops, which holds either 0 or 1 depending upon
the result stored in the accumulator.

These are the set of 5 flip-flops −

• Sign (S)

• Zero (Z)

• Auxiliary Carry (AC)

• Parity (P)

• Carry (C)

Its bit position is shown in the following table −

D7 D6 D5 D4 D3 D2 D1 D0

S Z

AC

P

CY

Instruction register and decoder

It is an 8-bit register. When an instruction is fetched from memory then it is stored in the
Instruction register. Instruction decoder decodes the information present in the
Instruction register.

Timing and control unit

It provides timing and control signal to the microprocessor to perform operations.
Following are the timing and control signals, which control external and internal circuits
−

• Control Signals: READY, RD’, WR’, ALE

• Status Signals: S0, S1, IO/M’

• DMA Signals: HOLD, HLDA

• RESET Signals: RESET IN, RESET OUT

Interrupt control

As the name suggests it controls the interrupts during a process. When a microprocessor
is executing a main program and whenever an interrupt occurs, the microprocessor shifts
the control from the main program to process the incoming request. After the request is
completed, the control goes back to the main program.

There are 5 interrupt signals in 8085 microprocessor: INTR, RST 7.5, RST 6.5, RST 5.5,
TRAP.

Serial Input/output control

It controls the serial data communication by using these two instructions: SID (Serial
input data) and SOD (Serial output data).

Address buffer and address-data buffer

The content stored in the stack pointer and program counter is loaded into the address
buffer and address-data buffer to communicate with the CPU. The memory and I/O chips
are connected to these buses; the CPU can exchange the desired data with the memory
and I/O chips.

Address bus and data bus

Data bus carries the data to be stored. It is bidirectional, whereas address bus carries
the location to where it should be stored and it is unidirectional. It is used to transfer the
data & Address I/O devices.

1.5 Signal Description (Pin diagram) of 8085 Microprocessor

 The pins of a 8085 microprocessor
can be classified into seven groups −

Address bus

A15-A8, it carries the most significant 8-bits of memory/IO address.

Data bus

AD7-AD0, it carries the least significant 8-bit address and data bus.

Control and status signals

These signals are used to identify the nature of operation. There are 3 control signal and
3 status signals.

Three control signals are RD, WR & ALE.

• RD − This signal indicates that the selected IO or memory device is to be read
and is ready for accepting data available on the data bus.

• WR − This signal indicates that the data on the data bus is to be written into a
selected memory or IO location.

• ALE − It is a positive going pulse generated when a new operation is started by
the microprocessor. When the pulse goes high, it indicates address. When the
pulse goes down it indicates data.

Three status signals are IO/M, S0 & S1.

IO/M

This signal is used to differentiate between IO and Memory operations, i.e. when it is
high indicates IO operation and when it is low then it indicates memory operation.

S1 & S0

These signals are used to identify the type of current operation.

Power supply

There are 2 power supply signals − VCC & VSS. VCC indicates +5v power supply and
VSS indicates ground signal.

Clock signals

There are 3 clock signals, i.e. X1, X2, CLK OUT.

• X1, X2 − A crystal (RC, LC N/W) is connected at these two pins and is used to set
frequency of the internal clock generator. This frequency is internally divided by
2.

• CLK OUT − This signal is used as the system clock for devices connected with
the microprocessor.

Interrupts & externally initiated signals

Interrupts are the signals generated by external devices to request the microprocessor
to perform a task. There are 5 interrupt signals, i.e. TRAP, RST 7.5, RST 6.5, RST 5.5,
and INTR. We will discuss interrupts in detail in interrupts section.

• INTA − It is an interrupt acknowledgment signal.

• RESET IN − This signal is used to reset the microprocessor by setting the program
counter to zero.

• RESET OUT − This signal is used to reset all the connected devices when the
microprocessor is reset.

• READY − This signal indicates that the device is ready to send or receive data. If
READY is low, then the CPU has to wait for READY to go high.

• HOLD − This signal indicates that another master is requesting the use of the
address and data buses.

• HLDA (HOLD Acknowledge) − It indicates that the CPU has received the HOLD
request and it will relinquish the bus in the next clock cycle. HLDA is set to low
after the HOLD signal is removed.

Serial I/O signals

There are 2 serial signals, i.e. SID and SOD and these signals are used for serial
communication.

• SOD (Serial output data line) − The output SOD is set/reset as specified by the
SIM instruction.

• SID (Serial input data line) − The data on this line is loaded into accumulator
whenever a RIM instruction is executed.

1.6 Register Organizations, Distinguish between

SPR & GPR , Timing & Control Module

(a) General Purpose Registers – The 8085 has six general-purpose registers to store
8-bit data; these are identified as- B, C, D, E, H, and L. These can be combined as
register pairs – BC, DE, and HL, to perform some 16-bit operation. These registers are
used to store or copy temporary data, by using instructions, during the execution of the
program.

(b) Specific Purpose Registers –
• Accumulator:

The accumulator is an 8-bit register (can store 8-bit data) that is the part of the
arithmetic and logical unit (ALU). After performing arithmetical or logical operations,
the result is stored in accumulator. Accumulator is also defined as register A.

• Flag registers:

The flag register is a special purpose register and it is completely different from
other registers in microprocessor. It consists of 8 bits and only 5 of them are useful.
The other three are left vacant and are used in the future Intel versions.These 5
flags are set or reset (when value of flag is 1, then it is said to be set and when
value is 0, then it is said to be reset) after an operation according to data condition
of the result in the accumulator and other registers. The 5 flag registers are:

1. Sign Flag: It occupies the seventh bit of the flag register, which is also known
as the most significant bit. It helps the programmer to know whether the number
stored in the accumulator is positive or negative. If the sign flag is set, it means
that number stored in the accumulator is negative, and if reset, then the number
is positive.

2. Zero Flag:: It occupies the sixth bit of the flag register. It is set, when the
operation performed in the ALU results in zero(all 8 bits are zero), otherwise it is
reset. It helps in determining if two numbers are equal or not.

3. Auxillary Carry Flag: It occupies the fourth bit of the flag register. In an
arithmetic operation, when a carry flag is generated by the third bit and passed
on to the fourth bit, then Auxillary Carry flag is set. If not flag is reset. This flag is
used internally for BCD(Binary-Coded decimal Number) operations.
Note – This is the only flag register in 8085 which is not accessible by user.

4. Parity Flag: It occupies the second bit of the flag register. This flag tests for
number of 1’s in the accumulator. If the accumulator holds even number of 1’s,
then this flag is set and it is said to even parity. On the other hand if the number
of 1’s is odd, then it is reset and it is said to be odd parity.

5. Carry Flag: It occupies the zeroth bit of the flag register. If the arithmetic
operation results in a carry(if result is more than 8 bit), then Carry Flag is set;
otherwise it is reset.

(c) Memory Registers –
There are two 16-bit registers used to hold memory addresses. The size of these
registers is 16 bits because the memory addresses are 16 bits. They are :-

• Program Counter: This register is used to sequence the execution of the
instructions. The function of the program counter is to point to the memory address
from which the next byte is to be fetched. When a byte (machine code) is being

fetched, the program counter is incremented by one to point to the next memory
location.

• Stack Pointer: It is used as a memory pointer. It points to a memory location in
read/write memory, called the stack. It is always incremented/decremented by 2
during push and pop operation.

Example –
Here two binary numbers are added. The result produced is stored in the accumulator.
Now lets check what each bit means. Refer to the below explanation simultaneously to
connect them with the example.

• Sign Flag (7th bit): It is reset(0), which means number stored in the accumulator is
positive.

• Zero Flag (6th bit): It is reset(0), thus result of the operations performed in the ALU
is non-zero.

• Auxiliary Carry Flag (4th bit): We can see that b3 generates a carry which is
taken by b4, thus auxiliary carry flag gets set (1).

• Parity Flag (2nd bit): It is reset(0), it means that parity is odd. The accumulator
holds odd number of 1’s.

• Carry Flag (0th bit): It is set(1), output results in more than 8 bit.
•

Distinguish between SPR & GPR

Segment Registers:

• Segments are specific areas clear in a program for containing

data, code and stack.

• There are 3 main segments − Code Segment − It contains all the

instructions to be executed. A 16-bit Code Segment register or CS

register supplies the starting address of the code segment.

General purpose registers:

• General purpose registers are used to store momentary data

within the microprocessor.

• It is of sixteen bits and is divided into two eight-bit registers

1.7 Stack, Stack pointer &Stack top.

A stack (also called a pushdown stack) operates in a last-in/first-

out sense. When a new data item is entered or "pushed" onto the

top of a stack, the stack pointer increments to the next physical

memory address, and the new item is copied to that address.

When a data item is "pulled" or "popped" from the top of a stack,

the item is copied from the address of the stack pointer, and the

stack pointer decrements to the next available item at the top of

the stack

A stack pointer is a small register that stores the address of the

last program request in a stack. A stack is a

specialized buffer which stores data from the top down. As new

requests come in, they "push down" the older ones. The most

recently entered request always resides at the top of the stack,

and the program always takes requests from the top.

https://whatis.techtarget.com/definition/register
https://whatis.techtarget.com/definition/stack
https://whatis.techtarget.com/definition/buffer

1.8 Interrupts:-8085 Interrupts, Masking of

Interrupt(SIM,RIM)

In 8085 Instruction set, SIM (Set Interrupt Mask) and RIM (Read Interrupt
Mask) instructions can perform mask and unmask RST7.5, RST6.5, and
RST5.5 interrupt pins and can also read their status.

In 8085 Instruction set, SIM stands for “Set Interrupt Mask”. It is 1-Byte
instruction and it is a multi-purpose instruction. The main uses

of SIM instruction are –

• Masking/unmasking of RST7.5, RST6.5, and RST5.5

• Reset to 0 RST7.5 flip-flop

• Perform serial output of data

Mnemonics, Operand Opcode(in HEX) Bytes

SIM 30 1

When SIM instruction is executed then the content of the Accumulator
decides the action to be taken. So before executing the SIM instruction, it is
mandatory to initialize Accumulator with the required value. The meaning
and purpose of the various bits of the accumulator when SIM is executed
has been depicted below –

Note that except bit 5, which is a don't care bit, the other bits of the
Accumulator decide the effect of executing the SIM instruction. Masking of
interrupts: Only the LS 4 bits of the accumulator are used for masking or

unmasking of interrupts.

In 8085 Instruction set, RIM stands for “Read Interrupt Mask”. It is a 1-Byte
multi-purpose instruction. It is used for the following purposes.

• To check whether RST7.5, RST6.5, and RST5.5 are masked or not;

• To check whether interrupts are enabled or not;

• To check whether RST7.5, RST6.5, or RST5.5 interrupts are pending
or not;

• To perform serial input of data.

Mnemonics, Operand Opcode(in HEX) Bytes

RIM 20 1

To get the status information about the interrupt system, RIM instruction
provides status information about interrupt system and this instruction can
be used for serial input of data. Through this RIM instruction, 8085 can know
which interrupt is masked or unmasked, etc. The contents of the Accumulator

after the execution of the RIM instruction provide this information.

Thus, it is essential to look into the Accumulator contents after the RIM
instruction is executed. The meaning of the various bits of the Accumulator
after RIM is executed is shown in the following figure –

Mask status of interrupts: The LS 3 bits of the accumulator are used to
provide mask status of interrupts. Note that they are not used for masking or

unmasking. Masking or unmasking has to be done using the SIM instruction.

Unit-2: Instruction Set and Assembly Language Programming

2.1 Addressing data & Differentiate between one-byte, two-

byte &three-byte instructions with examples

& 2.2 Addressing modes in instructions with suitable examples

The 8085 instruction set is classified into 3 categories by considering the
length of the instructions. In 8085, the length is measured in terms of “byte”
rather then “word” because 8085 microprocessor has 8-bit data bus. Three
types of instruction are: 1-byte instruction, 2-byte instruction, and 3-byte

instruction.

1. One-byte instructions –
In 1-byte instruction, the opcode and the operand of an instruction are
represented in one byte.
• Example-1:

Task- Copy the contents of accumulator in register B.
•

Mnemonic- MOV B, A
• Opcode- MOV
• Operand- B, A
• Hex Code- 47H
• Binary code- 0100 0111
• Example-2:

Task- Add the contents of accumulator to the contents of register B.
• Mnemonic- ADD B
• Opcode- ADD
• Operand- B
• Hex Code- 80H

Binary code- 1000 0000
• Example-3:

Task- Invert (complement) each bit in the accumulator.
• Mnemonic- CMA
• Opcode- CMA
• Operand- NA
• Hex Code- 2FH

Binary code- 0010 1111

Note – The length of these instructions is 8-bit; each requires one memory
location. The mnemonic is always followed by a letter (or two letters)
representing the registers (such as A, B, C, D, E, H, L and SP).
2. Two-byte instructions –
Two-byte instruction is the type of instruction in which the first 8 bits
indicates the opcode and the next 8 bits indicates the operand.
• Example-1:

Task- Load the hexadecimal data 32H in the accumulator.
• Mnemonic- MVI A, 32H
• Opcode- MVI
• Operand- A, 32H
• Hex Code- 3E
• 32
• Binary code- 0011 1110

0011 0010
• Example-2:

Task- Load the hexadecimal data F2H in the register B.
• Mnemonic- MVI B, F2H
• Opcode- MVI
• Operand- B, F2H
• Hex Code- 06
• F2
• Binary code- 0000 0110

1111 0010
Note – This type of instructions need two bytes to store the binary codes.
The mnemonic is always followed by 8-bit (byte) data.
3. Three-byte instructions –
Three-byte instruction is the type of instruction in which the first 8 bits
indicates the opcode and the next two bytes specify the 16-bit address. The
low-order address is represented in second byte and the high-order
address is represented in the third byte.
• Example-1:

Task- Load contents of memory 2050H in the accumulator.
• Mnemonic- LDA 2050H
• Opcode- LDA
• Operand- 2050H
• Hex Code- 3A
• 50
• 20

• Binary code- 0011 1010
• 0101 0000

0010 0000
• Example-2:

Task- Transfer the program sequence to the memory location 2050H.
• Mnemonic- JMP 2085H
• Opcode- JMP
• Operand- 2085H
• Hex Code- C3
• 85
• 20
• Binary code- 1100 0011
• 1000 0101

0010 0000
Note – These instructions would require three memory locations to store
the binary codes. The mnemonic is always followed by 16-bit (or adr).
•

Mnemonic- MOV B, A
• Opcode- MOV
• Operand- B, A
• Hex Code- 47H
• Binary code- 0100 0111
• Example-2:

Task- Add the contents of accumulator to the contents of register B.
• Mnemonic- ADD B
• Opcode- ADD
• Operand- B
• Hex Code- 80H

Binary code- 1000 0000
• Example-3:

Task- Invert (complement) each bit in the accumulator.
• Mnemonic- CMA
• Opcode- CMA
• Operand- NA
• Hex Code- 2FH

Binary code- 0010 1111
Note – The length of these instructions is 8-bit; each requires one memory
location. The mnemonic is always followed by a letter (or two letters)
representing the registers (such as A, B, C, D, E, H, L and SP).

2. Two-byte instructions –
Two-byte instruction is the type of instruction in which the first 8 bits
indicates the opcode and the next 8 bits indicates the operand.
• Example-1:

Task- Load the hexadecimal data 32H in the accumulator.
• Mnemonic- MVI A, 32H
• Opcode- MVI
• Operand- A, 32H
• Hex Code- 3E
• 32
• Binary code- 0011 1110

0011 0010
• Example-2:

Task- Load the hexadecimal data F2H in the register B.
• Mnemonic- MVI B, F2H
• Opcode- MVI
• Operand- B, F2H
• Hex Code- 06
• F2
• Binary code- 0000 0110

1111 0010
Note – This type of instructions need two bytes to store the binary codes.
The mnemonic is always followed by 8-bit (byte) data.
3. Three-byte instructions –
Three-byte instruction is the type of instruction in which the first 8 bits
indicates the opcode and the next two bytes specify the 16-bit address. The
low-order address is represented in second byte and the high-order
address is represented in the third byte.
• Example-1:

Task- Load contents of memory 2050H in the accumulator.
• Mnemonic- LDA 2050H
• Opcode- LDA
• Operand- 2050H
• Hex Code- 3A
• 50
• 20
• Binary code- 0011 1010
• 0101 0000

0010 0000

• Example-2:
Task- Transfer the program sequence to the memory location 2050H.

• Mnemonic- JMP 2085H
• Opcode- JMP
• Operand- 2085H
• Hex Code- C3
• 85
• 20
• Binary code- 1100 0011
• 1000 0101

0010 0000
Note – These instructions would require three memory locations to store
the binary codes. The mnemonic is always followed by 16-bit (or adr).

2.3 Instruction Set of 8085(Data Transfer, Arithmetic, Logical, Branching, Stack&

I/O , Machine Control)

Data transfer instructions in 8085 microprocessor

Data tranfer instructions are the instructions which transfers data in the microprocessor.
They are also called copy instructions.

Following is the table showing the list of logical instructions:

OPCODE OPERAND EXPLANATION EXAMPLE

MOV Rd, Rs Rd = Rs MOV A, B

MOV Rd, M Rd = Mc MOV A, 2050

MOV M, Rs M = Rs MOV 2050, A

MVI Rd, 8-bit data Rd = 8-bit data MVI A, 50

MVI M, 8-bit data M = 8-bit data MVI 2050, 50

OPCODE OPERAND EXPLANATION EXAMPLE

LDA 16-bit address A = contents at address LDA 2050

STA 16-bit address contents at address = A STA 2050

LHLD 16-bit address directly loads at H & L registers LHLD 2050

SHLD 16-bit address directly stores from H & L registers SHLD 2050

LXI r.p., 16-bit data loads the specified register pair with data LXI H, 3050

LDAX r.p. indirectly loads at the accumulator A LDAX H

STAX 16-bit address indirectly stores from the accumulator A STAX 2050

XCHG none exchanges H with D, and L with E XCHG

PUSH r.p. pushes r.p. to the stack PUSH H

POP r.p. pops the stack to r.p. POP H

IN 8-bit port address inputs contents of the specified port to A IN 15

OUT 8-bit port address outputs contents of A to the specified port OUT 15

Following is the table showing the list of Arithmetic instructions with their meanings.

Opcode Operand Meaning Explanation

ADD
R

M

Add register or
memory, to the
accumulator

The contents of the register or
memory are added to the contents of
the accumulator and the result is
stored in the accumulator.

Example − ADD K.

ADC
R

M

Add register to the
accumulator with
carry

The contents of the register or
memory & M the Carry flag are added
to the contents of the accumulator
and the result is stored in the
accumulator.

Example − ADC K

ADI 8-bit data
Add the immediate
to the accumulator

The 8-bit data is added to the
contents of the accumulator and the
result is stored in the accumulator.

Example − ADI 55K

ACI 8-bit data
Add the immediate
to the accumulator
with carry

The 8-bit data and the Carry flag are
added to the contents of the
accumulator and the result is stored
in the accumulator.

Example − ACI 55K

LXI Reg. pair, 16bit data
Load the register
pair immediate

The instruction stores 16-bit data into
the register pair designated in the
operand.

Example − LXI K, 3025M

DAD Reg. pair
Add the register
pair to H and L
registers

The 16-bit data of the specified
register pair are added to the
contents of the HL register.

Example − DAD K

SUB
R

M

Subtract the
register or the
memory from the
accumulator

The contents of the register or the
memory are subtracted from the
contents of the accumulator, and the
result is stored in the accumulator.

Example − SUB K

SBB
R

M

Subtract the source
and borrow from
the accumulator

The contents of the register or the
memory & M the Borrow flag are
subtracted from the contents of the
accumulator and the result is placed
in the accumulator.

Example − SBB K

SUI 8-bit data
Subtract the
immediate from the
accumulator

The 8-bit data is subtracted from the
contents of the accumulator & the
result is stored in the accumulator.

Example − SUI 55K

SBI 8-bit data

Subtract the
immediate from the
accumulator with
borrow

The contents of register H are
exchanged with the contents of
register D, and the contents of
register L are exchanged with the
contents of register E.

Example − XCHG

INR
R

M

Increment the
register or the
memory by 1

The contents of the designated
register or the memory are
incremented by 1 and their result is
stored at the same place.

Example − INR K

INX R
Increment register
pair by 1

The contents of the designated
register pair are incremented by 1
and their result is stored at the same
place.

Example − INX K

DCR
R

M

Decrement the
register or the
memory by 1

The contents of the designated
register or memory are decremented
by 1 and their result is stored at the
same place.

Example − DCR K

DCX R
Decrement the
register pair by 1

The contents of the designated
register pair are decremented by 1
and their result is stored at the same
place.

Example − DCX K

DAA None
Decimal adjust
accumulator

The contents of the accumulator are
changed from a binary value to two
4-bit BCD digits.

If the value of the low-order 4-bits in
the accumulator is greater than 9 or
if AC flag is set, the instruction adds
6 to the low-order four bits.

If the value of the high-order 4-bits in
the accumulator is greater than 9 or
if the Carry flag is set, the instruction
adds 6 to the high-order four bits.

Example − DAA

Logical instructions in 8085 microprocessor

Logical instructions are the instructions which perform basic
logical operations such as AND, OR, etc. In 8085 microprocessor,
the destination operand is always the accumulator. Here logical
operation works on a bitwise level.

Following is the table showing the list of logical instructions:

OPCODE OPERAND DESTINATION EXAMPLE

ANA R A = A AND R ANA B

ANA M A = A AND Mc ANA 2050

OPCODE OPERAND DESTINATION EXAMPLE

ANI 8-bit data A = A AND 8-bit data ANI 50

ORA R A = A OR R ORA B

ORA M A = A OR Mc ORA 2050

ORI 8-bit data A = A OR 8-bit data ORI 50

XRA R A = A XOR R XRA B

XRA M A = A XOR Mc XRA 2050

XRI 8-bit data A = A XOR 8-bit data XRI 50

CMA none A = 1’s compliment of A CMA

CMP R Compares R with A and triggers the flag register CMP B

CMP M Compares Mc with A and triggers the flag register CMP 2050

CPI 8-bit data Compares 8-bit data with A and triggers the flag register CPI 50

RRC none Rotate accumulator right without carry RRC

RLC none Rotate accumulator left without carry RLC

OPCODE OPERAND DESTINATION EXAMPLE

RAR none Rotate accumulator right with carry RAR

RAL none Rotate accumulator left with carry RAR

CMC none Compliments the carry flag CMC

STC none Sets the carry flag STC

Branching instructions in 8085 microprocessor

Branching instructions refer to the act of switching execution to a different instruction
sequence as a result of executing a branch instruction.

The three types of branching instructions are:

1. Jump (unconditional and conditional)
2. Call (unconditional and conditional)
3. Return (unconditional and conditional)

1. Jump Instructions – The jump instruction transfers the program sequence to the
memory address given in the operand based on the specified flag. Jump instructions
are 2 types: Unconditional Jump Instructions and Conditional Jump Instructions.

(a) Unconditional Jump Instructions: Transfers the program sequence to the
described memory address.

OPCODE OPERAND EXPLANATION EXAMPLE

JMP address Jumps to the address JMP 2050

(b) Conditional Jump Instructions: Transfers the program sequence to the described
memory address only if the condition in satisfied.

OPCODE OPERAND EXPLANATION EXAMPLE

JC address Jumps to the address if carry flag is 1 JC 2050

JNC address Jumps to the address if carry flag is 0 JNC 2050

JZ address Jumps to the address if zero flag is 1 JZ 2050

JNZ address Jumps to the address if zero flag is 0 JNZ 2050

JPE address Jumps to the address if parity flag is 1 JPE 2050

JPO address Jumps to the address if parity flag is 0 JPO 2050

JM address Jumps to the address if sign flag is 1 JM 2050

JP address Jumps to the address if sign flag 0 JP 2050

2. Call Instructions – The call instruction transfers the program sequence to the
memory address given in the operand. Before transferring, the address of the next
instruction after CALL is pushed onto the stack. Call instructions are 2 types:
Unconditional Call Instructions and Conditional Call Instructions.
(a) Unconditional Call Instructions: It transfers the program sequence to the memory
address given in the operand.

OPCODE OPERAND EXPLANATION EXAMPLE

CALL address Unconditionally calls CALL 2050

(b) Conditional Call Instructions: Only if the condition is satisfied, the instructions
executes.

OPCODE OPERAND EXPLANATION EXAMPLE

CC address Call if carry flag is 1 CC 2050

CNC address Call if carry flag is 0 CNC 2050

CZ address Calls if zero flag is 1 CZ 2050

CNZ address Calls if zero flag is 0 CNZ 2050

CPE address Calls if parity flag is 1 CPE 2050

CPO address Calls if parity flag is 0 CPO 2050

CM address Calls if sign flag is 1 CM 2050

CP address Calls if sign flag is 0 CP 2050

3. Return Instructions – The return instruction transfers the program sequence from
the subroutine to the calling program. Jump instructions are 2 types: Unconditional
Jump Instructions and Conditional Jump Instructions.
(a) Unconditional Return Instruction: The program sequence is transferred
unconditionally from the subroutine to the calling program.

OPCODE OPERAND EXPLANATION EXAMPLE

RET none Return from the subroutine unconditionally RET

(b) Conditional Return Instruction: The program sequence is transferred
unconditionally from the subroutine to the calling program only is the condition is
satisfied.

OPCODE OPERAND EXPLANATION EXAMPLE

RC none Return from the subroutine if carry flag is 1 RC

RNC none Return from the subroutine if carry flag is 0 RNC

RZ none Return from the subroutine if zero flag is 1 RZ

RNZ none Return from the subroutine if zero flag is 0 RNZ

RPE none Return from the subroutine if parity flag is 1 RPE

RPO none Return from the subroutine if parity flag is 0 RPO

RM none Returns from the subroutine if sign flag is 1 RM

RP none Returns from the subroutine if sign flag is 0 RP

Stack I-O and Machine Control Instructions

The following instructions affect the Stack and/or Stack Pointer:

PUSH Push Two bytes of Data onto the Stack

POP Pop Two Bytes of Data off the Stack

XTHL Exchange Top of Stack with H & L

SPHL Move content of H & L to Stack Pointer

The I/0 instructions are as follows:

IN Initiate Input Operation

OUT Initiate Output Operation

The Machine Control instructions are as follows:

EI Enable Interrupt System

DI Disable Interrupt System

HLT Halt

NOP No Operation

2.5 Memory & I/O Addressing,

It is possible to address an I/O port as if it were a memory location. For example, let us
say, the chip select pin of an I/O port chip is activated when address = FFF0H, IO/M* =
0, and RD* = 0. This is shown in the following fig.

In this case, the I/O port chip is selected when the 8085 is thinking that it is addressing
memory location FFF0H for a read operation. Note that 8085 thinks that it is addressing
a memory location because it has sent out IO/M* as a logic 0. But in reality, an input port
has been selected, and the input port supplies information to the 8085. Such I/O ports
that are addressed by the processor as if they were memory locations are called memory-
mapped I/O ports.

In the memory location we address an Input Output port. An example to be cited as when
address = FFF0H, IO/M* = 0, and RD* = 0. Here we select the Input Output port chip
when 8085 microprocessor finds that it is memory allocated location as it is sent out like
IO/M* as a logic 0.

But in real world we select an Input Port which supplies information to 8085
Microprocessor. Like the memory locations 8085 microprocessor gets addressed by the
processor which are called memory-mapped Input Output ports.

There is a set of instructions for this memory-mapped I/O operations. E.g. STA, LDA etc.
Let us discuss STA instruction in detail for better understanding.

Register A is an 8-bit register used in 8085 to perform arithmetic, logical, I/O &
LOAD/STORE operations. Register A is quite often called as an Accumulator. An
accumulator is a register for short-term, intermediate storage of arithmetic and logic data
in a computer's CPU (Central Processing Unit). In an arithmetic operation involving two
operands, one operand has to be in this register. And the result of the arithmetic operation
will be stored or accumulated in this register. Similarly, in a logical operation involving two
operands, one operand has to be in the accumulator. Also, some other operations, like
complementing and decimal adjustment, can be performed only on the accumulator.

Let us now consider a program segment which involves content of Accumulator only. In
8085 Instruction set, STA is a mnemonic that stands for STore Accumulator contents in
memory. In this instruction, Accumulator 8-bit content will be stored to a memory location
whose 16-bit address is indicated in the instruction as a16. This instruction uses absolute
addressing for specifying the destination. This instruction occupies 3-Bytes of memory.
First Byte is required for the opcode, and next successive 2-Bytes provide the 16-bit
address divided into 8-bits each consecutively.

Mnemonics, Operand Opcode (in HEX) Bytes

STA Address 32 3

Let us consider STA 4050H as an example instruction of this type. It is a 3-Byte
instruction. The first Byte will contain the opcode hex value 32H. As in 8085 assembly
language coding supports low order Byte of the address should be mentioned at first then
the high order Byte of the address should be mentioned next. So next Byte in memory
will hold 50H and after that 40H will be kept in the last third Byte. Let us suppose the initial
content of Accumulator is ABH and initial content of memory location 4050H is CDH. So
after execution, Accumulator content will remain as ABH and 4050H location’s content
will become ABH replacing its previous content CDH. The content tracing of this
instruction has been shown below −

Before After

(A) ABH ABH

(4050H) CDH ABH

The content tracing of this instruction has been shown below

Address Hex Codes Mnemonic Comment

2008 2A STA 4050H Content of the memory location 4050H A

2009 50

Low order Byte of the address

200A 40

High order Byte of the address

2.4 Simple Assembly Language Programming of 8085

8085 program to add two 8 bit numbers

Problem – Write an assembly language program to add two 8 bit numbers stored at
address 2050 and address 2051 in 8085 microprocessor. The starting address of the
program is taken as 2000.
Example –

Algorithm –
1. Load the first number from memory location 2050 to accumualtor.
2. Move the content of accumulator to register H.
3. Load the second number from memory location 2051 to accumaltor.
4. Then add the content of register H and accumulator using “ADD” instruction and

storing result at 3050
5. The carry generated is recovered using “ADC” command and is stored at memory

location 3051
Program –

MEMORY ADDRESS MNEMONICS COMMENT

2000 LDA 2050 A<-[2050]

2003 MOV H, A H<-A

2004 LDA 2051 A<-[2051]

MEMORY ADDRESS MNEMONICS COMMENT

2007 ADD H A<-A+H

2006 MOV L, A L←A

2007 MVI A 00 A←00

2009 ADC A A←A+A+carry

200A MOV H, A H←A

200B SHLD 3050 H→3051, L→3050

200E HLT

Explanation –
1. LDA 2050 moves the contents of 2050 memory location to the accumulator.
2. MOV H, A copies contents of Accumulator to register H to A
3. LDA 2051 moves the contents of 2051 memory location to the accumulator.
4. ADD H adds contents of A (Accumulator) and H register (F9). The result is stored in

A itself. For all arithmetic instructions A is by default an operand and A stores
the result as well

5. MOV L, A copies contents of A (34) to L
6. MVI A 00 moves immediate data (i.e., 00) to A
7. ADC A adds contents of A(00), contents of register specified (i.e A) and carry (1).

As ADC is also an arithmetic operation, A is by default an operand and A stores the
result as well

8. MOV H, A copies contents of A (01) to H
9. SHLD 3050 moves the contents of L register (34) in 3050 memory location and

contents of H register (01) in 3051 memory location
10. HLT stops executing the program and halts any further execution

8085 program to subtract two 8-bit numbers with or without borrow

Problem – Write a program to subtract two 8-bit numbers with or without borrow where
first number is at 2500 memory address and second number is at 2501 memory
address and store the result into 2502 and borrow into 2503 memory address.
Example –

Algorithm –
1. Load 00 in a register C (for borrow)
2. Load two 8-bit number from memory into registers
3. Move one number to accumulator
4. Subtract the second number with accumulator
5. If borrow is not equal to 1, go to step 7
6. Increment register for borrow by 1
7. Store accumulator content in memory
8. Move content of register into accumulator
9. Store content of accumulator in other memory location
10. Stop

Program –

MEMORY MNEMONICS OPERANDS COMMENT

2000 MVI C, 00 [C] <- 00

2002 LHLD 2500 [H-L] <- [2500]

MEMORY MNEMONICS OPERANDS COMMENT

2005 MOV A, H [A] <- [H]

2006 SUB L [A] <- [A] – [L]

2007 JNC 200B Jump If no borrow

200A INR C [C] <- [C] + 1

200B STA 2502 [A] -> [2502], Result

200E MOV A, C [A] <- [C]

2010 STA 2503 [A] -> [2503], Borrow

2013 HLT

Stop

Explanation – Registers A, H, L, C are used for general purpose:
1. MOV is used to transfer the data from memory to accumulator (1 Byte)
2. LHLD is used to load register pair directly using 16-bit address (3 Byte instruction)
3. MVI is used to move data immediately into any of registers (2 Byte)
4. STA is used to store the content of accumulator into memory(3 Byte instruction)
5. INR is used to increase register by 1 (1 Byte instruction)
6. JNC is used to jump if no borrow (3 Byte instruction)
7. SUB is used to subtract two numbers where one number is in accumulator(1 Byte)
8. HLT is used to halt the program

2.4.2 Logic Operations (AND, OR, Complement 1’s &
2’s) & Masking of bits

 logical operation is a special symbol or word
that connects two or more phrases of

information. It is most often used to test
whether a certain relationship between the
phrases is true or false.

In computing, logical operations are

necessary because they can be used to

model the way that information flows

through electrical circuits, such as the

circuits inside a CPU. These types of

operations are called boolean operations.

The elements in a circuit which behave

according to Boolean logic are called logic

gates.

AND

The AND logic operation returns true only if

either of its inputs are true. If either of the

inputs is false, the output is also false.

In computer programming, the AND

operation is usually written

as && (two ampersands).

In Boolean algebra, the AND operation of two

inputs A and B can be written as AB.

https://www.computerhope.com/jargon/t/true.htm
https://www.computerhope.com/jargon/f/false.htm
https://www.computerhope.com/jargon/c/circuit.htm
https://www.computerhope.com/jargon/c/cpu.htm
https://www.computerhope.com/jargon/b/boolean.htm
https://www.computerhope.com/jargon/l/logicgat.htm
https://www.computerhope.com/jargon/l/logicgat.htm
https://www.computerhope.com/jargon/a/ampersand.htm

Below is the truth table for an AND

operation, and the circuit diagram of an AND

logic gate.

AND

A

B

AB

0 0 0

1 0 0

0 1 0

1 1 1

OR

The OR logic operation returns true if either

of its inputs are true. If all inputs are false,

the output is also false.

In computer programming, the OR operation

is usually written as || (two vertical bars).

In Boolean algebra, the OR value of two

inputs A and B can be written as A+B.

https://www.computerhope.com/jargon/p/pipe.htm

Note

Do not mistake the OR operation for arithmetic addition, even though they both use the "+" symbol. They are distinct operations.

Below is the truth table for an OR operation,

and the circuit diagram of an OR logic gate.

OR

A

B

A+B

0 0 0

1 0 1

0 1 1

1 1 1

https://www.computerhope.com/jargon/a/add.htm

Unit-3: TIMING DIAGRAMS.

	Microcomputer
	Microprocessor
	8085 Microprocessor – Functional Units
	Accumulator
	Arithmetic and logic unit
	General purpose register
	Program counter
	Stack pointer
	Temporary register
	Flag register
	Instruction register and decoder
	Timing and control unit
	Interrupt control
	Serial Input/output control
	Address buffer and address-data buffer
	Address bus and data bus

	Address bus
	Data bus
	Control and status signals
	IO/M
	S1 & S0
	Power supply
	Clock signals
	Interrupts & externally initiated signals
	Serial I/O signals
	Data transfer instructions in 8085 microprocessor
	Logical instructions in 8085 microprocessor
	Branching instructions in 8085 microprocessor
	Stack I-O and Machine Control Instructions
	8085 program to add two 8 bit numbers
	8085 program to subtract two 8-bit numbers with or without borrow
	AND
	OR

