DIPLOMA IN ELECTRONICS &
TELECOMMUNICATION ENGINEERING

(Effective FROM 2019-20 Sessions)

Th.3 MICROPROCESSOR &
MICROCONTROLLER

LEARNING NOTES

UNIT-1:MICROPROCESSOR (ARCHITECTURE AND
PROGRAMMING-8085-8-BIT)

1.1 Introduction to Microcomputer AND Microprocessor
& distinguish between them.

Microcomputer

A microcomputer can be defined as a small sized, inexpensive, and
limited capability computer. It has the same architectural block
structure that is present on a computer. Present-day
microcomputers are having smaller sizes. Nowadays, they are of
the size of a notebook. But in the coming days also their sizes will
get more reduced as well. Due to their lower costs, individuals can
possess them as their personal computers. Because of mass
production, they are becoming still cheaper. Initially, in the earlier
days, they were not very much powerful. Their internal operations
and instructions were very much limited and restricted. But at
present days, microcomputers have not only multiplied and divide
instructions on unsigned and signed numbers but are also capable
of performing floating point arithmetic operations. In fact, they are
becoming more powerful than the minicomputers and main
computers of yesteryear.

As an example, the Commodore 64 was one of the most popular
microcomputers of its era and is the best-selling model of home
computer of all time.

So a microcomputer is a small, relatively inexpensive computer
with a microprocessor as its central processing unit (CPU). It
includes a single printed circuit board containing a microprocessor,
memory, and minimal input/output(l/O) circuitry mounted. With the
advent of increasingly powerful microprocessors, microcomputers
became popular in the 1970s and1980s. The predecessors to
these computers, mainframes, and minicomputers, were
comparatively much larger and more expensive(though indeed
present-day mainframes such as the IBM System z machines use
one or more custom microprocessors as their CPUs). Also, we can
mention that many microcomputers, in the generic sense, (when
equipped with a keyboard and screen for input and output) are also
personal computers.

Microprocessor

The processor on a single chip is called a Microprocessor which
can process micro-instructions. Instructions in the form of Osand 1s

are called micro-instructions. The microprocessor is the CPU part
of a microcomputer, and it is also available as a single integrated
circuit. Thus as main components, the microprocessor will have
theControl Unit (CU) and the Arithmetic Logic Unit (ALU) of a
microcomputer. An example is Intel 8085 microprocessor. In
addition to the microprocessor features, a microcomputer will have
the following additional features:

. ROM/PROM/EPROM/EEPROM for storing program;

. RAM for storing data, intermediate results, and final results;
. 1/O devices for communication with the outside world;

. 1/0O ports for communication with the 1/0O devices.

In the present-day world, Microprocessors are extensively used.
Before the microprocessor’s invention, the logic design was done
by hardware using gates, flip-flops, etc. A mini-computer was too
much costly. With the advent of the microprocessor, logic design
using hardware has been mostly replaced. It provides flexibility
instrumentation where the characteristics of the system can be
changed just by changing the software. Also, new generations of
applications have surfaced, which were not thought of earlier
because of the prohibitive cost of a minicomputer or the complexity
of logic design using hardware.

Some of the applications where microprocessors have been used
are listed below —

. Business applications such as desktop publishing;

. Industrial applications such as power plant control;
. Measuring instruments such as multimeter;

. Household equipment such as washing machine;

. Medical equipment such as blood pressure monitor;

. Defense equipment such as light combat aircraft;

. Computers such as a personal computer.

Microprocessor

Read-Write
Memaory

Serial
Interface

System Bus

Micro Controller

Read-Write
Memory

Read-Only
Memory

Microcontroller

Timer I/0 Port Serial Interface

Microprocessor is heart of Computer system.

Miero Controller is a heart of embedded system.

It is just a processor. Memory and I/0 components
have to be connected externally

Miero controller has external processor along with
internal memory and i/0 components

Since memory and 1/0 has to be connected externally,
the circuit becomes large.

Since memory and I/0 are present internally, the
cirenit is small.

Cannot be used in compact systems and hence
inefficient

Can be used in compact systems and hence it is an
efficient technique

Cost of the entire system increases

Cost of the entire system is low

Due to external components, the entire power
consumption is high. Hence it is not suitable to used
with devices running on stored power like batteries.

Since external components are low, total power
consumption is less and can be used with devices
running on stored power like batteries.

Most of the microprocessors do not have power saving
features.

Most of the micro controllers have power saving modes
like idle mode and power saving mode. This helps to
reduce power consumption even further.

Since memory and 1/0 components are all external,
each instruection will need external operation, henee it
is relatively slower.

Since components are internal, most of the operations
are internal instruction, hence speed is fast.

Microprocessor have less number of registers, hence
more operations are memory based.

Micro controller have more number of registers, hence
the programs are easier to write.

Microprocessors are based on von Neumann
model/architecture where program and data are stored
in same memory module

Miero controllers are based on Harvard architecture
where program memory and Data memory are separate

Mainly used in personal computers

Used mainly in washing machine, MP3 players

1.2 Concept of Address bus, Data bus, Control bus & System

Bus

SYSTEM BUSES

= Set of wires, that interconnects all the components
(subsystems) of a computer

* A source component sources out data onto the bus

= A destination component inputs data from the bus

= May have a hierarchy of buses
* Address, data and control buses to access memory and an /O controller.
* Second set of buses from I/O controller to attached devices/peripherals

= Peripheral Component Interconnect{PCl) bus is an example of a very
common local bus

Control bus

=
Address bus

+
Data bus

...

System bus

Fig: System Bus (Data, Address and Control Bus)

ADDRESS BUS

= |t is a channel which transmits addresses of data (not the data) from
the CPU to memory.

= The address bus consists of 16,24, or 32 parallel signal lines.

* The number of lines (wires) determines the amount of memory that
can be directly addressed as each line camies one bit of the address.

= If the CPU has N address lines, then it can directly address 2N address
lines.

= For example, a computer with 32 bit address can address 4GB of
physical memory.

* CPU reads/writes data from the memory by addressing a
unique location; outputs the location of the data (aka
address) on the address bus; memory uses this address to
access the proper data.

* Each I/O device (such as monitor, keypad, etc) has a
unique address as well (or arange of addresses); when
accessing a I/0 device, CPU places its address on the
address bus. Each device will detect if it is its own address
and act accordingly

* Devices always receive data from the CPU; CPU never
reads the address buss (it is never addressed)

DATA BUS

» Data bus is a channel across which actual data are transferred
between the CPU, memory and I/O devices.

* The data bus consists of 8, 16, 32 or 64 parallel signal lines.
Because each wire can transfer | bit of data at a time, an 8 wire
bus can move 8 bits at a time which is a full byte.

* The number of wires in the bus affects the speed at which data
can travel between hardware components. The wider the data
bus, more data it can carry at one time.

* The data bus is bidirectional this means that the CPU can read
data in from memory or it can send data out to memory.

* When the CPU fetches data from memory, it first outputs
the address on the address bus, then the memory outputs
the data onto the data bus; the CPU reads the data from
data bus

* When writing data onto the memory, the CPU outputs
first the address on the address bus, then outputs the data
onto the output bus; memory then reads and stores the
data at the proper location

* The process to read/write to a /O device is similar

CONTROL BUS

The physical connections that carry control information between the
CPU and other devices within the computer. This bus is mostly a
collection of unidirectional signals.

* It is the path for all timing and controlling functions sent by the
control units to other units of the system.

= It carries signals that report the status of various devices.

* These signals indicate whether the data is to be read into or written out the CPU,
whether the CPU is accessing memory or an 10 device, and whether the 1/O device or
memory is ready for the data transfer

* For example, one line of the bus is used to indicate whether the CPU is

currently reading from or writing to main memory. Others are /O
Read/Write

1.3 General Bus structure Block diagram

ADDRESS BUS

8085
MICROP- |

>

ROCESSOR™

DATA BUS

b

UNIT
(MPU) éfﬁjl

ﬁ

CONTROL BUS

b

MEMORY

L]

INPUT

OUTPUT

Bus organization system of 8085 Microprocessor

1.4 BASIC ARCHITECTURE OF 8085 (8 BIT)

MICROPROCESSOR

INTA RST65 TRAP
INTR | RSTS5|RSTT.5 SID SOD
Interrupt control Serlal IO
control
S-bit internal data bus
%)) 5)) ® | ® |)
Accumulaton] emp. reg. a q;% L. Instruction Borep | Crog
A 8 8
Dreg. | Ereg.
h 4))
instruction instruction Hreg | Lreg replster
dee:er d‘a:ﬁ’ 116) urruy
a El stk
machine e hine R
evele oxele 116)
encotling encoding program counter
Power +5V =P
SUpPIY - JGND — Timing and control
X, =9 '
X, p} CIK ™ 0]
~ Gen Control Status DMA Reset address baffer address buffer
v vyvy v vvv t vt ¥ l
CIkOut RDWR ALK S 8§, 10/ M | HLDA Resel out
! i - Aje=Ag AD; = AD,
nendy HoR),.enein address bus address/data bus

8085 is pronounced as "eighty-eighty-five" microprocessor. It is an 8-bit microprocessor
designed by Intel in 1977 using NMOS technology.

It has the following configuration -

8-bit data bus

16-bit address bus, which can address upto 64KB

A 16-bit program counter
A 16-bit stack pointer

Six 8-bit registers arranged in pairs: BC, DE, HL

Requires +5V supply to operate at 3.2 MHZ single phase clock

It is used in washing machines, microwave ovens, mobile phones, etc.

8085 Microprocessor — Functional Units

8085 consists of the following functional units —

Accumulator

It is an 8-bit register used to perform arithmetic, logical, /0 & LOAD/STORE operations.
It is connected to internal data bus & ALU.

Arithmetic and logic unit

As the name suggests, it performs arithmetic and logical operations like Addition,
Subtraction, AND, OR, etc. on 8-bit data.

General purpose register

There are 6 general purpose registers in 8085 processor, i.e. B, C, D, E, H & L. Each
register can hold 8-bit data.

These registers can work in pair to hold 16-bit data and their pairing combination is like
B-C, D-E & H-L.

Program counter

It is a 16-bit register used to store the memory address location of the next instruction to
be executed. Microprocessor increments the program whenever an instruction is being
executed, so that the program counter points to the memory address of the next
instruction that is going to be executed.

Stack pointer

It is also a 16-bit register works like stack, which is always incremented/decremented by
2 during push & pop operations.

Temporary register
It is an 8-bit register, which holds the temporary data of arithmetic and logical operations.
Flag register

It is an 8-bit register having five 1-bit flip-flops, which holds either 0 or 1 depending upon
the result stored in the accumulator.

These are the set of 5 flip-flops -

e Sign (S)

e Zero(2)

e Auxiliary Carry (AC)
e Parity (P)

e Carry (C)

Its bit position is shown in the following table -

D7 D6 D5 D4 D3 D2 D1 DO

Instruction register and decoder

It is an 8-bit register. When an instruction is fetched from memory then it is stored in the
Instruction register. Instruction decoder decodes the information present in the
Instruction register.

Timing and control unit

It provides timing and control signal to the microprocessor to perform operations.
Following are the timing and control signals, which control external and internal circuits

e Control Signals: READY, RD’, WR’, ALE
e Status Signals: SO, S1, IO/M’

e DMA Signals: HOLD, HLDA

e RESET Signals: RESET IN, RESET OUT

Interrupt control

As the name suggests it controls the interrupts during a process. When a microprocessor
is executing a main program and whenever an interrupt occurs, the microprocessor shifts
the control from the main program to process the incoming request. After the request is
completed, the control goes back to the main program.

There are 5 interrupt signals in 8085 microprocessor: INTR, RST 7.5, RST 6.5, RST 5.5,
TRAP.

Serial Input/output control

It controls the serial data communication by using these two instructions: SID (Serial
input data) and SOD (Serial output data).

Address buffer and address-data buffer

The content stored in the stack pointer and program counter is loaded into the address
buffer and address-data buffer to communicate with the CPU. The memory and I/O chips
are connected to these buses; the CPU can exchange the desired data with the memory
and 1/O chips.

Address bus and data bus

Data bus carries the data to be stored. It is bidirectional, whereas address bus carries
the location to where it should be stored and it is unidirectional. It is used to transfer the
data & Address I/O devices.

1.5 Signal Description (Pin diagram) of 8085 Microprocessor

Xy —{]1 Vce
Xy, —{]2 HOLD
Reset out 4—{]|3 HLDA
SOD w—{]4 CLK (out)
SID —»{]5 Resetin
Trap €—{|6 Ready

RST 7.5 —{]7 1O/M

RST 6.5 «4—{|8 S,

RST 5.5 —»{|9 Vpp
INTR —»{]10 RD
INTA 4—{]11 3 WR

AD, w»{]12 2 So
AD; w»{]13 2 A1s
AD, w»{|14 2 Asg
AD; w»{|15 2 Ass
AD, «»{|16 2 A1z
AD; {17 2 A11
ADg w»{]18 2 Aso
AD; w»{]19 2 Ag
Vss —{]20 21 Ag

The pins of a 8085 microprocessor
can be classified into seven groups -

Address bus

A15-A8, it carries the most significant 8-bits of memory/IO address.
Data bus

AD7-ADQO, it carries the least significant 8-bit address and data bus.
Control and status signals

These signals are used to identify the nature of operation. There are 3 control signal and
3 status signals.
Three control signals are RD, WR & ALE.

« RD - This signal indicates that the selected IO or memory device is to be read
and is ready for accepting data available on the data bus.

« WR - This signal indicates that the data on the data bus is to be written into a
selected memory or 10 location.

« ALE - Itis a positive going pulse generated when a new operation is started by
the microprocessor. When the pulse goes high, it indicates address. When the
pulse goes down it indicates data.

Three status signals are I0/M, SO & S1.

IO/M

This signal is used to differentiate between 10 and Memory operations, i.e. when it is
high indicates 10 operation and when it is low then it indicates memory operation.

S1& S0
These signals are used to identify the type of current operation.

Power supply

There are 2 power supply signals - VCC & VSS. VCC indicates +5v power supply and
VSS indicates ground signal.

Clock signals

There are 3 clock signals, i.e. X1, X2, CLK OUT.

e X1, X2 - Acrystal (RC, LC N/W) is connected at these two pins and is used to set

frequency of the internal clock generator. This frequency is internally divided by
2.

e« CLK OUT - This signal is used as the system clock for devices connected with
the microprocessor.

Interrupts & externally initiated signals

Interrupts are the signals generated by external devices to request the microprocessor
to perform a task. There are 5 interrupt signals, i.e. TRAP, RST 7.5, RST 6.5, RST 5.5,
and INTR. We will discuss interrupts in detail in interrupts section.

e INTA - Itis an interrupt acknowledgment signal.

« RESET IN - This signal is used to reset the microprocessor by setting the program
counter to zero.

« RESET OUT - This signal is used to reset all the connected devices when the
microprocessor is reset.

« READY - This signal indicates that the device is ready to send or receive data. If
READY is low, then the CPU has to wait for READY to go high.

« HOLD - This signal indicates that another master is requesting the use of the
address and data buses.

« HLDA (HOLD Acknowledge) - It indicates that the CPU has received the HOLD
request and it will relinquish the bus in the next clock cycle. HLDA is set to low
after the HOLD signal is removed.

Serial I/O signals

There are 2 serial signals, i.e. SID and SOD and these signals are used for serial
communication.

e SOD (Serial output data line) - The output SOD is set/reset as specified by the
SIM instruction.

o SID (Serial input data line) — The data on this line is loaded into accumulator
whenever a RIM instruction is executed.

1.6 Register Organizations, Distinguish between
SPR & GPR, Timing & Control Module

(a) General Purpose Registers — The 8085 has six general-purpose registers to store
8-bit data; these are identified as- B, C, D, E, H, and L. These can be combined as
register pairs — BC, DE, and HL, to perform some 16-bit operation. These registers are
used to store or copy temporary data, by using instructions, during the execution of the
program.

(b) Specific Purpose Registers —

e Accumulator:
The accumulator is an 8-bit register (can store 8-bit data) that is the part of the
arithmetic and logical unit (ALU). After performing arithmetical or logical operations,
the result is stored in accumulator. Accumulator is also defined as register A.

o Flag registers:

fig(a)-Bit position of various flags in flag registers of 8085

The flag register is a special purpose register and it is completely different from
other registers in microprocessor. It consists of 8 bits and only 5 of them are useful.
The other three are left vacant and are used in the future Intel versions.These 5
flags are set or reset (when value of flag is 1, then it is said to be set and when
value is 0, then it is said to be reset) after an operation according to data condition
of the result in the accumulator and other registers. The 5 flag registers are:

1. Sign Flag: It occupies the seventh bit of the flag register, which is also known
as the most significant bit. It helps the programmer to know whether the number
stored in the accumulator is positive or negative. If the sign flag is set, it means
that number stored in the accumulator is negative, and if reset, then the number
IS positive.

2. Zero Flag:: It occupies the sixth bit of the flag register. It is set, when the
operation performed in the ALU results in zero(all 8 bits are zero), otherwise it is
reset. It helps in determining if two numbers are equal or not.

3. Auxillary Carry Flag: It occupies the fourth bit of the flag register. In an
arithmetic operation, when a carry flag is generated by the third bit and passed
on to the fourth bit, then Auxillary Carry flag is set. If not flag is reset. This flag is
used internally for BCD(Binary-Coded decimal Number) operations.

Note — This is the only flag register in 8085 which is not accessible by user.

4. Parity Flag: It occupies the second bit of the flag register. This flag tests for
number of 1’s in the accumulator. If the accumulator holds even number of 1’s,
then this flag is set and it is said to even parity. On the other hand if the number
of 1's is odd, then it is reset and it is said to be odd parity.

5. Carry Flag: It occupies the zeroth bit of the flag register. If the arithmetic
operation results in a carry(if result is more than 8 bit), then Carry Flag is set;
otherwise it is reset.

(c) Memory Registers —
There are two 16-bit registers used to hold memory addresses. The size of these
registers is 16 bits because the memory addresses are 16 bits. They are :-

« Program Counter: This register is used to sequence the execution of the
instructions. The function of the program counter is to point to the memory address
from which the next byte is to be fetched. When a byte (machine code) is being

fetched, the program counter is incremented by one to point to the next memory
location.

o Stack Pointer: Itis used as a memory pointer. It points to a memory location in
read/write memory, called the stack. It is always incremented/decremented by 2
during push and pop operation.

Example —

Here two binary numbers are added. The result produced is stored in the accumulator.

Now lets check what each bit means. Refer to the below explanation simultaneously to

connect them with the example.

One Byte Number
..‘ .._

Upper nible Lower nible
> - -

¢—‘ Auxillary Carry

Value of flags

Sign Flag (7th bit): It is reset(0), which means number stored in the accumulator is
positive.

Zero Flag (6th bit): It is reset(0), thus result of the operations performed in the ALU
IS non-zero.

Auxiliary Carry Flag (4th bit): We can see that b3 generates a carry which is
taken by b4, thus auxiliary carry flag gets set (1).

Parity Flag (2nd bit): It is reset(0), it means that parity is odd. The accumulator
holds odd number of 1’s.

Carry Flag (Oth bit): Itis set(1), output results in more than 8 bit.

Distinguish between SPR & GPR

Segment Registers:

* Segments are specific areas clear in a program for containing
data, code and stack.

* There are 3 main segments — Code Segment — It contains all the
Instructions to be executed. A 16-bit Code Segment register or CS
register supplies the starting address of the code segment.

General purpose registers:

* General purpose registers are used to store momentary data
within the microprocessor.

* It is of sixteen bits and is divided into two eight-bit registers

1.7 Stack, Stack pointer &Stack top.

A stack (also called a pushdown stack) operates in a last-in/first-
out sense. When a new data item is entered or "pushed" onto the
top of a stack, the stack pointer increments to the next physical
memory address, and the new item is copied to that address.
When a data item is "pulled” or "popped" from the top of a stack,
the item is copied from the address of the stack pointer, and the
stack pointer decrements to the next available item at the top of
the stack

A stack pointer is a small register that stores the address of the
last program request in a stack. A stack is a

specialized buffer which stores data from the top down. As new
requests come in, they "push down" the older ones. The most
recently entered request always resides at the top of the stack,
and the program always takes requests from the top.

https://whatis.techtarget.com/definition/register
https://whatis.techtarget.com/definition/stack
https://whatis.techtarget.com/definition/buffer

1.8 Interrupts:-8085 Interrupts, Masking of
Interrupt(SIM,R1M)

In 8085 Instruction set, SIM (Set Interrupt Mask) and RIM (Read Interrupt
Mask) instructions can perform mask and unmask RST7.5, RST6.5, and
RSTS5.5 interrupt pins and can also read their status.

In 8085 Instruction set, SIM stands for “Set Interrupt Mask”. It is 1-Byte
instruction and it is a multi-purpose instruction. The main uses
of SIM instruction are —

« Masking/unmasking of RST7.5, RST6.5, and RST5.5
« Resetto 0 RST7.5 flip-flop

« Perform serial output of data

Mnemonics, Operand Opcode(in HEX) Bytes
SIM 30 1

When SIM instruction is executed then the content of the Accumulator
decides the action to be taken. So before executing the SIM instruction, it is
mandatory to initialize Accumulator with the required value. The meaning
and purpose of the various bits of the accumulator when SIM is executed
has been depicted below —

7 6 5 4 3 2 | 0 ¢« Bit number

SOD SOE X R7.5 MSE M7.5 Mé6.5 M5.5

Note that except bit 5, which is a don't care bit, the other bits of the
Accumulator decide the effect of executing the SIM instruction. Masking of
interrupts: Only the LS 4 bits of the accumulator are used for masking or
unmasking of interrupts.

In 8085 Instruction set, RIM stands for “Read Interrupt Mask”. It is a 1-Byte
multi-purpose instruction. It is used for the following purposes.

« To check whether RST7.5, RST6.5, and RST5.5 are masked or not;
« To check whether interrupts are enabled or not;

« To check whether RST7.5, RST6.5, or RST5.5 interrupts are pending
or not;

« To perform serial input of data.

Mnemonics, Operand Opcode(in HEX) Bytes

RIM 20 1

To get the status information about the interrupt system, RIM instruction
provides status information about interrupt system and this instruction can
be used for serial input of data. Through this RIM instruction, 8085 can know
which interrupt is masked or unmasked, etc. The contents of the Accumulator
after the execution of the RIM instruction provide this information.

Thus, it is essential to look into the Accumulator contents after the RIM
instruction is executed. The meaning of the various bits of the Accumulator
after RIM is executed is shown in the following figure —

7 6 5 - 3 2 1 0 ¢—— Bit number
SID IP7.5 IP6.5 IP5.5 IE M7.5 M6.5 M5.5
_ e J R e, e = ¢
a BV
Pending status Mask status

Mask status of interrupts: The LS 3 bits of the accumulator are used to
provide mask status of interrupts. Note that they are not used for masking or
unmasking. Masking or unmasking has to be done using the SIM instruction.

Unit-2: Instruction Set and Assembly Language Programming

2.1 Addressing data & Differentiate between one-byte, two-
byte &three-byte instructions with examples

& 2.2 Addressing modes in instructions with suitable examples

The 8085 instruction set is classified into 3 categories by considering the
length of the instructions. In 8085, the length is measured in terms of “byte”
rather then “word” because 8085 microprocessor has 8-bit data bus. Three
types of instruction are: 1-byte instruction, 2-byte instruction, and 3-byte
instruction.

1. One-byte instructions —
In 1-byte instruction, the opcode and the operand of an instruction are
represented in one byte.
. Example-1:
Task- Copy the contents of accumulator in register B.

Mnemonic- MOV B, A
o Opcode- MOV
« Operand- B, A
« Hex Code- 47H
« Binary code- 0100 0111
. Example-2:
Task- Add the contents of accumulator to the contents of register B.
« Mnemonic- ADD B
« Opcode- ADD
« Operand- B
« Hex Code- 80H
Binary code- 1000 0000
. Example-3:
Task- Invert (complement) each bit in the accumulator.
« Mnemonic- CMA
« Opcode- CMA
« Operand- NA
« Hex Code- 2FH
Binary code- 0010 1111

Note — The length of these instructions is 8-bit; each requires one memory
location. The mnemonic is always followed by a letter (or two letters)
representing the registers (such as A, B, C, D, E, H, L and SP).
2. Two-byte instructions —
Two-byte instruction is the type of instruction in which the first 8 bits
indicates the opcode and the next 8 bits indicates the operand.
. Example-1:
Task- Load the hexadecimal data 32H in the accumulator.
« Mnemonic- MVI A, 32H
« Opcode- MVI
« Operand- A, 32H
« Hex Code- 3E
e 32
« Binary code- 0011 1110
0011 0010
« Example-2:
Task- Load the hexadecimal data F2H in the register B.
« Mnemonic- MVI B, F2H
« Opcode- MVI
« Operand- B, F2H
« Hex Code- 06
e F2
« Binary code- 0000 0110
1111 o010
Note — This type of instructions need two bytes to store the binary codes.
The mnemonic is always followed by 8-bit (byte) data.
3. Three-byte instructions —
Three-byte instruction is the type of instruction in which the first 8 bits
indicates the opcode and the next two bytes specify the 16-bit address. The
low-order address is represented in second byte and the high-order
address is represented in the third byte.
. Example-1:
Task- Load contents of memory 2050H in the accumulator.
« Mnemonic- LDA 2056H
o« Opcode- LDA
« Operand- 2056H
« Hex Code- 3A
. 50
.« 20

Binary code- 0011 1010
0101 0000

0010 0000

Example-2:

Task- Transfer the program sequence to the memory location 2050H.
Mnemonic- JMP 2085H
Opcode- IMP

Operand- 2085H

Hex Code- C3

85

20

Binary code- 1100 0011
1000 0101

0010 0000

Note — These instructions would require three memory locations to store
the binary codes. The mnemonic is always followed by 16-bit (or adr).

Mnemonic- MOV B, A

Opcode- MOV

Operand- B, A

Hex Code- 47H

Binary code- 0100 0111

Example-2:

Task- Add the contents of accumulator to the contents of register B.
Mnemonic- ADD B

Opcode- ADD

Operand- B

Hex Code- 80H

Binary code- 1000 0000

Example-3:

Task- Invert (complement) each bit in the accumulator.
Mnemonic- CMA

Opcode- CMA

Operand- NA

Hex Code- 2FH

Binary code- 0010 1111

Note — The length of these instructions is 8-bit; each requires one memory
location. The mnemonic is always followed by a letter (or two letters)
representing the registers (such as A, B, C, D, E, H, L and SP).

2. Two-byte instructions —
Two-byte instruction is the type of instruction in which the first 8 bits
indicates the opcode and the next 8 bits indicates the operand.

Example-1:

Task- Load the hexadecimal data 32H in the accumulator.
Mnemonic- MVI A, 32H

Opcode- MVI

Operand- A, 32H

Hex Code- 3E

32

Binary code- 0011 1110

0011 0010

Example-2:

Task- Load the hexadecimal data F2H in the register B.
Mnemonic- MVI B, F2H

Opcode- MVI

Operand- B, F2H

Hex Code- 06

F2

Binary code- 0000 0110

1111 o010

Note — This type of instructions need two bytes to store the binary codes.
The mnemonic is always followed by 8-bit (byte) data.

3. Three-byte instructions —

Three-byte instruction is the type of instruction in which the first 8 bits
indicates the opcode and the next two bytes specify the 16-bit address. The
low-order address is represented in second byte and the high-order
address is represented in the third byte.

Example-1:

Task- Load contents of memory 2050H in the accumulator.
Mnemonic- LDA 2056H
Opcode- LDA

Operand- 2056H

Hex Code- 3A

50

20

Binary code- 0011 1010
0101 0000

0010 0000

« Example-2:
Task- Transfer the program sequence to the memory location 2050H.
« Mnemonic- JMP 2085H
« Opcode- JIMP
o Operand- 2085H
« Hex Code- C3
« 85
. 20
« Binary code- 1100 0011
« 1000 0101
0010 0000
Note — These instructions would require three memory locations to store
the binary codes. The mnemonic is always followed by 16-bit (or adr).

2.3 Instruction Set of 8085(Data Transfer, Arithmetic, Logical, Branching, Stack&
1/0, Machine Control)

Data transfer instructions in 8085 microprocessor

Data tranfer instructions are the instructions which transfers data in the microprocessor.
They are also called copy instructions.

Following is the table showing the list of logical instructions:

MOV Rd, Rs Rd =Rs MOV A, B
MOV Rd, M Rd = Mc MOV A, 2050
MOV M, Rs M =Rs MOV 2050, A
MVI Rd, 8-bit data Rd = 8-bit data MVIA, 50

MVI M, 8-bit data M = 8-bit data MVI 2050, 50

LDA

STA

LHLD

SHLD

LXI

LDAX

STAX

XCHG

PUSH

POP

ouT

16-bit address

16-bit address

16-bit address

16-bit address

r.p., 16-bit data

r.p.

16-bit address

none

r.p.

r.p.

8-bit port address

8-bit port address

A = contents at address

contents at address = A

directly loads at H & L registers

directly stores from H & L registers

loads the specified register pair with data

indirectly loads at the accumulator A

indirectly stores from the accumulator A

exchanges H with D, and L with E

pushes r.p. to the stack

pops the stack to r.p.

inputs contents of the specified port to A

outputs contents of A to the specified port

LDA 2050

STA 2050

LHLD 2050

SHLD 2050

LXI H, 3050

LDAX H

STAX 2050

XCHG

PUSH H

POP H

IN 15

OuUT 15

Following is the table showing the list of Arithmetic instructions with their meanings.

Opcode

Operand

Meaning

Explanation

ADD

ADC

ADI

ACI

LXI

DAD

SUB

8-bit data

8-bit data

Reg. pair, 16bit data

Reg. pair

Add register or
memory, to the
accumulator

Add register to the
accumulator with
carry

Add the immediate
to the accumulator

Add the immediate
to the accumulator
with carry

Load the register
pair immediate

Add the register
pair to H and L
registers

Subtract the
register or the
memory from the
accumulator

The contents of the register or
memory are added to the contents of
the accumulator and the result is
stored in the accumulator.

Example — ADD K.

The contents of the register or
memory & M the Carry flag are added
to the contents of the accumulator
and the result is stored in the
accumulator.

Example - ADC K

The 8-bit data is added to the
contents of the accumulator and the
result is stored in the accumulator.

Example — ADI 55K

The 8-bit data and the Carry flag are
added to the contents of the
accumulator and the result is stored
in the accumulator.

Example — ACI 55K

The instruction stores 16-bit data into
the register pair designated in the
operand.

Example - LXI K, 3025M

The 16-bit data of the specified
register pair are added to the
contents of the HL register.

Example - DAD K

The contents of the register or the
memory are subtracted from the
contents of the accumulator, and the
result is stored in the accumulator.

Example - SUB K

SBB

Sul

SBI

INR

INX

DCR

DCX

8-bit data

8-bit data

Subtract the source
and borrow from
the accumulator

Subtract the
immediate from the
accumulator

Subtract the
immediate from the
accumulator with
borrow

Increment the
register or the
memory by 1

Increment register
pair by 1

Decrement the
register or the
memory by 1

Decrement the

register pair by 1

The contents of the register or the
memory & M the Borrow flag are
subtracted from the contents of the
accumulator and the result is placed
in the accumulator.

Example - SBB K

The 8-bit data is subtracted from the
contents of the accumulator & the
result is stored in the accumulator.

Example — SUI 55K

The contents of register H are
exchanged with the contents of
register D, and the contents of
register L are exchanged with the
contents of register E.

Example - XCHG

The contents of the designated
register or the memory are
incremented by 1 and their result is
stored at the same place.

Example - INR K

The contents of the designated
register pair are incremented by 1
and their result is stored at the same
place.

Example — INX K

The contents of the designated
register or memory are decremented
by 1 and their result is stored at the
same place.

Example - DCR K

The contents of the designated
register pair are decremented by 1
and their result is stored at the same
place.

Example - DCX K

The contents of the accumulator are
changed from a binary value to two
4-bit BCD digits.

If the value of the low-order 4-bits in
the accumulator is greater than 9 or
Decimal adiust If AC flag is set, the instruction adds
DAA None accumulator : 6 to the low-order four bits.

If the value of the high-order 4-bits in
the accumulator is greater than 9 or
if the Carry flag is set, the instruction
adds 6 to the high-order four bits.

Example — DAA

Logical instructions in 8085 microprocessor

Logical instructions are the instructions which perform basic
logical operations such as AND, OR, etc. In 8085 microprocessor,
the destination operand is always the accumulator. Here logical
operation works on a bitwise level.

Following is the table showing the list of logical instructions:

ANA R A=AANDR ANA B

ANA M A=AAND Mc ANA 2050

ANI

ORA

ORA

ORI

XRA

XRA

XRI

CMA

CMP

CMP

CPI

RRC

RLC

8-bit data

8-bit data

8-bit data

none

8-bit data

none

none

A=A AND 8-bit data

A=AORR

A=AO0OR Mc

A = A OR 8-bit data

A=AXORR

A=AXOR Mc

A = A XOR 8-bit data

A =1s compliment of A

Compares R with A and triggers the flag register

Compares Mc with A and triggers the flag register

Compares 8-bit data with A and triggers the flag register

Rotate accumulator right without carry

Rotate accumulator left without carry

ANI 50

ORA B

ORA 2050

ORI 50

XRA B

XRA 2050

XRI 50

CMA

CMP B

CMP 2050

CP150

RRC

RLC

RAR none Rotate accumulator right with carry RAR

RAL none Rotate accumulator left with carry RAR
CcMC none Compliments the carry flag CMC
STC none Sets the carry flag STC

Branching instructions in 8085 microprocessor

Branching instructions refer to the act of switching execution to a different instruction
sequence as a result of executing a branch instruction.

The three types of branching instructions are:

1. Jump (unconditional and conditional)

2. Call (unconditional and conditional)

3. Return (unconditional and conditional)

1. Jump Instructions — The jump instruction transfers the program sequence to the
memory address given in the operand based on the specified flag. Jump instructions
are 2 types: Unconditional Jump Instructions and Conditional Jump Instructions.

(a) Unconditional Jump Instructions: Transfers the program sequence to the
described memory address.

IMP address Jumps to the address JMP 2050

(b) Conditional Jump Instructions: Transfers the program sequence to the described
memory address only if the condition in satisfied.

JC address Jumps to the address if carry flagis 1 JC 2050
JNC address Jumps to the address if carry flagis O JNC 2050
Y4 address Jumps to the address if zero flag is 1 JZ 2050
IJNZ address Jumps to the address if zero flag is 0 JNZ 2050
JPE address Jumps to the address if parity flagis 1 JPE 2050
JPO address Jumps to the address if parity flag is O JPO 2050
M address Jumps to the address if sign flag is 1 JM 2050
JP address Jumps to the address if sign flag 0 JP 2050

2. Call Instructions — The call instruction transfers the program sequence to the
memory address given in the operand. Before transferring, the address of the next
instruction after CALL is pushed onto the stack. Call instructions are 2 types:
Unconditional Call Instructions and Conditional Call Instructions.

(a) Unconditional Call Instructions: It transfers the program sequence to the memory
address given in the operand.

CALL address Unconditionally calls CALL 2050

(b) Conditional Call Instructions: Only if the condition is satisfied, the instructions
executes.

CcC address Call if carry flagis 1 CC 2050
CNC address Call if carry flag is O CNC 2050
cz address Calls if zero flagis 1 CZ 2050
CNz address Calls if zero flag is O CNZ 2050
CPE address Calls if parity flagis 1 CPE 2050
CPO address Calls if parity flagis 0 CPO 2050
M address Calls if sign flag is 1 CM 2050
CP address Calls if sign flag is O CP 2050

3. Return Instructions — The return instruction transfers the program sequence from
the subroutine to the calling program. Jump instructions are 2 types: Unconditional
Jump Instructions and Conditional Jump Instructions.

(a) Unconditional Return Instruction: The program sequence is transferred
unconditionally from the subroutine to the calling program.

RET none Return from the subroutine unconditionally RET

(b) Conditional Return Instruction: The program sequence is transferred
unconditionally from the subroutine to the calling program only is the condition is
satisfied.

RC none Return from the subroutine if carry flagis 1 RC
RNC none Return from the subroutine if carry flag is O RNC
RZ none Return from the subroutine if zero flag is 1 RZ
RNZ none Return from the subroutine if zero flag is 0 RNZ
RPE none Return from the subroutine if parity flag is 1 RPE
RPO none Return from the subroutine if parity flagis 0 RPO
RM none Returns from the subroutine if sign flag is 1 RM

RP none Returns from the subroutine if sign flag is 0 RP

Stack I-O and Machine Control Instructions

The following instructions affect the Stack and/or Stack Pointer:

PUSH Push Two bytes of Data onto the Stack
POP Pop Two Bytes of Data off the Stack
XTHL Exchange Top of Stack with H & L

SPHL Move content of H & L to Stack Pointer

The I/0 instructions are as follows:

IN Initiate Input Operation

ouT Initiate Output Operation

The Machine Control instructions are as follows:

ET Enable Interrupt System
DI Disable Interrupt System
HLT Halt

NOP No Operation

2.5 Memory & I/O Addressing,

It is possible to address an 1/O port as if it were a memory location. For example, let us
say, the chip select pin of an 1/O port chip is activated when address = FFFOH, IO/M* =
0, and RD* = 0. This is shown in the following fig.

In this case, the I/O port chip is selected when the 8085 is thinking that it is addressing
memory location FFFOH for a read operation. Note that 8085 thinks that it is addressing
a memory location because it has sent out IO/M* as a logic 0. But in reality, an input port
has been selected, and the input port supplies information to the 8085. Such 1/O ports
that are addressed by the processor as if they were memory locations are called memory-
mapped I/O ports.

1 A7 -

1 AN, —

| As - -

0 Ag—o—» —

1 Aqg » NAND) » To CS* of input port chip
1 N — > —~

1 D N ———

1 Ag—»

0 RID* o .

1 [IO/MNM™* -

In the memory location we address an Input Output port. An example to be cited as when
address = FFFOH, 10/M* = 0, and RD* = 0. Here we select the Input Output port chip
when 8085 microprocessor finds that it is memory allocated location as it is sent out like
IO/M* as a logic 0.

But in real world we select an Input Port which supplies information to 8085
Microprocessor. Like the memory locations 8085 microprocessor gets addressed by the
processor which are called memory-mapped Input Output ports.

There is a set of instructions for this memory-mapped I/O operations. E.g. STA, LDA etc.
Let us discuss STA instruction in detail for better understanding.

Register A is an 8-bit register used in 8085 to perform arithmetic, logical, /O &
LOAD/STORE operations. Register A is quite often called as an Accumulator. An
accumulator is a register for short-term, intermediate storage of arithmetic and logic data
in a computer's CPU (Central Processing Unit). In an arithmetic operation involving two
operands, one operand has to be in this register. And the result of the arithmetic operation
will be stored or accumulated in this register. Similarly, in a logical operation involving two
operands, one operand has to be in the accumulator. Also, some other operations, like
complementing and decimal adjustment, can be performed only on the accumulator.

Let us now consider a program segment which involves content of Accumulator only. In
8085 Instruction set, STA is a mnemonic that stands for STore Accumulator contents in
memory. In this instruction, Accumulator 8-bit content will be stored to a memory location
whose 16-bit address is indicated in the instruction as al6. This instruction uses absolute
addressing for specifying the destination. This instruction occupies 3-Bytes of memory.
First Byte is required for the opcode, and next successive 2-Bytes provide the 16-bit
address divided into 8-bits each consecutively.

Mnemonics, Operand Opcode (in HEX) Bytes

STA Address 32 3

Let us consider STA 4050H as an example instruction of this type. It is a 3-Byte
instruction. The first Byte will contain the opcode hex value 32H. As in 8085 assembly
language coding supports low order Byte of the address should be mentioned at first then
the high order Byte of the address should be mentioned next. So next Byte in memory
will hold 50H and after that 40H will be kept in the last third Byte. Let us suppose the initial
content of Accumulator is ABH and initial content of memory location 4050H is CDH. So
after execution, Accumulator content will remain as ABH and 4050H location’s content
will become ABH replacing its previous content CDH. The content tracing of this
instruction has been shown below -

Before After
(A) ABH ABH

(4050H) CDH ABH

The content tracing of this instruction has been shown below

Address Hex Codes Mnemonic Comment
2008 2A STA 4050H Content of the memory location 4050H A
2009 50 Low order Byte of the address
200A 40 High order Byte of the address

2.4 Simple Assembly Language Programming of 8085

8085 program to add two 8 bit numbers

Problem — Write an assembly language program to add two 8 bit numbers stored at
address 2050 and address 2051 in 8085 microprocessor. The starting address of the
program is taken as 2000.

Example -
Input Data => F9 3B
Memory Address > 2051 2050
Carry
L
Output Data => 01 34
Memory Address > | 3051 3050
Algorithm —
1. Load the first number from memory location 2050 to accumualtor.
2. Move the content of accumulator to register H.
3. Load the second number from memory location 2051 to accumaltor.
4. Then add the content of register H and accumulator using “ADD” instruction and
storing result at 3050
5. The carry generated is recovered using “ADC” command and is stored at memory
location 3051
Program —

2000 LDA 2050 A<-[2050]

2003 MOV H, A H<-A

2004 LDA 2051 A<-[2051]

2007 ADDH A<-A+H

2006 MOV L, A L&A

2007 MVI A 00 A<00

2009 ADCA A&A+A+carry
200A MOV H, A H<A

2008 SHLD 3050 H->3051, L->3050
200E HLT

Explanation —

1. LDA 2050 moves the contents of 2050 memory location to the accumulator.

2. MOV H, A copies contents of Accumulator to register H to A

3. LDA 2051 moves the contents of 2051 memory location to the accumulator.

4. ADD H adds contents of A (Accumulator) and H register (F9). The result is stored in
A itself. For all arithmetic instructions A is by default an operand and A stores
the result as well

5. MOV L, A copies contents of A (34) to L

6. MVI A 00 moves immediate data (i.e., 00) to A

7. ADC A adds contents of A(00), contents of register specified (i.e A) and carry (1).
As ADC is also an arithmetic operation, A is by default an operand and A stores the
result as well

8. MOV H, A copies contents of A (01) to H

9. SHLD 3050 moves the contents of L register (34) in 3050 memory location and

contents of H register (01) in 3051 memory location

10.HLT stops executing the program and halts any further execution

8085 program to subtract two 8-bit numbers with or without borrow

Problem — Write a program to subtract two 8-bit numbers with or without borrow where
first number is at 2500 memory address and second number is at 2501 memory
address and store the result into 2502 and borrow into 2503 memory address.
Example -

H-L
I_I_I

Input Datac=>| 03 04
Memory Address=>| 2501 | 2500

Borlrow Refult

Output Data >»| 01 01
Memory Address =>| 2503 | 2502

Algorithm —

Load 00 in a register C (for borrow)

Load two 8-bit number from memory into registers
Move one number to accumulator

Subtract the second number with accumulator

If borrow is not equal to 1, go to step 7

Increment register for borrow by 1

Store accumulator content in memory

Move content of register into accumulator

. Store content of accumulator in other memory location
10. Stop

Program —

©CoNoOkwhE

2000 MVI C, 00 [C] <- 00

2002 LHLD 2500 [H-L] <- [2500]

2005 MOV A, H [A] <- [H]

2006 SUB L [A] <- [A] = [L]
2007 JNC 200B Jump If no borrow
200A INR C [Cl<[C]+1
200B STA 2502 [A] ->[2502], Result
200E MOV A C [A] <-[C]

2010 STA 2503 [A] -> [2503], Borrow
2013 HLT Stop

Explanation — Registers A, H, L, C are used for general purpose:

MOV is used to transfer the data from memory to accumulator (1 Byte)

LHLD is used to load register pair directly using 16-bit address (3 Byte instruction)
MVI is used to move data immediately into any of registers (2 Byte)

STA is used to store the content of accumulator into memory(3 Byte instruction)
INR is used to increase register by 1 (1 Byte instruction)

JNC is used to jump if no borrow (3 Byte instruction)

SUB is used to subtract two numbers where one number is in accumulator(1 Byte)
HLT is used to halt the program

ONoObhwWNE

2.4.2 Logic Operations (AND, OR, Complement 1's &
2’s) & Masking of bits

logical operation is a special symbol or word
that connects two or more phrases of
information. It is most often used to test
whether a certain relationship between the
phrases is true or false.

In computing, logical operations are
necessary because they can be used to
model the way that information flows
through electrical circuits, such as the
circuits inside a CPU. These types of
operations are called boolean operations.

The elements in a circuit which behave
according to Boolean logic are called logic

gates.

AND

The AND logic operation returns true only if
either of its inputs are true. If either of the
inputs is false, the output is also false.

In computer programming, the AND
operation is usually written
as && (two ampersands).

In Boolean algebra, the AND operation of two
inputs A and B can be written as AB.

https://www.computerhope.com/jargon/t/true.htm
https://www.computerhope.com/jargon/f/false.htm
https://www.computerhope.com/jargon/c/circuit.htm
https://www.computerhope.com/jargon/c/cpu.htm
https://www.computerhope.com/jargon/b/boolean.htm
https://www.computerhope.com/jargon/l/logicgat.htm
https://www.computerhope.com/jargon/l/logicgat.htm
https://www.computerhope.com/jargon/a/ampersand.htm

Below is the truth table for an AND
operation, and the circuit diagram of an AND
logic gate.

A —
AB
= AND

0

A

0 0

1 0 0

0o 1 0

11 1
OR

The OR logic operation returns true if either
of its inputs are true. If all inputs are false,
the output is also false.

In computer programming, the OR operation
is usually written as || (two vertical bars).

In Boolean algebra, the OR value of two
inputs A and B can be written as A+B.

https://www.computerhope.com/jargon/p/pipe.htm

Note

Do not mistake the OR operation for arithmetic addition, even though they both use the "+" symbol. They are distinct operations.

Below is the truth table for an OR operation,
and the circuit diagram of an OR logic gate.

A A+B
B
A

0 0 0
1 0 1
0 1 1

https://www.computerhope.com/jargon/a/add.htm

Unit-3: TIMING DIAGRAMS.

CONCEPT OF TIMING DIAGRAM:-

An instruction is @ command given to the computer to perform a specific operation.
The sequence of instructions is called as a program. Program and data are stored in the CPU
fetches one instruction from the memory at a time and executes it.

To fetch the instruction CPU constitutes an instruction cycle consists of a fetch cycle
and execute cycle.

In fetch cycle the CPU fetch opcode from the memaory. The necessary steps which are
carried out to fetch an opcode from the memory, constitutes a fetch cycle.

The necessary steps which are carried out to get data, if any from the memory and to
perform the specific operation specified in an instruction, constitutes an execute cycle.

The necessary steps carried out tin a machine cycle can be represent graphically. The
graphical representation of machine cycle is called as Timing Diagram.

The necessary steps carried out to perform the operation of accessing either memory
or 1/O device, constitute a machine cycle. In other words the necessary steps carried out to
perform a fetch, a read or a write operation is called Machine cycle.

The subdivision of an operation performed in one clock cycle is called T-state. For
fetch timing diagram the no. of T-state is 4 and if the data is in register pair, than the no. of
T-state are 6.

1. Timing Diagram for Opcode fetches operation.

1 VaVaVaVa
wll
sl |

it--uﬁ_mrx;

Ay B~ Dy ===
I | | = ‘

ELE

Wt | ——

Timirsg Diagram for Opcode Feich Operation

2. Timing Diagram for Memory Read.

SIGNAL T = i

CLK

N/
i

S

X

S9
&

Ag-a15

sty [Y7o Y oam

3. Timing Diagram for Memory Write.

SONAL T C T
TN NSNS
100 L
"R
w X
o [DC
ADp=ADY :Xlo A7 X Opio?
ME |-t .
“ Rl I

Timing Diagram for Memory Write Operasion.

4. Timing Diagram for 1/O Read.

NERT T

,NC:E F___/—L_/__"__/—

g, .

Se _J)L

Pg-fg x

ADe - B0 X"“'“ } G

ALg

Ro

5. Timing Diagram for 1/O Write.

SLTH 7 %;:
u"* _/'*U
Torg e
<
()

A -fig X

ADa— e
Da-Aby XA""&“)"G\@

ALe

6. Timing Diagram for MOV A, B.

!
= el

Timing diagram for MOV A, B

S

M, (opcode fetch)
T, T, Ty T,
T :X 20
AD,—AD, :)(oo Yoi 76 | Dpeeees
|
omf | |
i
/
/

Timing Diagram for MVI r, Data.

T n n B &w|lhn n oW

gt d RN NN
ldrﬁ—v'—\
|
y J x 59
0 5y —
‘l‘l'.sq x Pl | M5By OF ADORESS) X 1PCetiy

oor ~ our w
£0-4D9 X o H opcone F{ietet 4 oama >
158 OF
A0DASS

stk
ol Ty TN o W

CPCODE FETCH CVQLE READ CvCLL

Tirming Diagram for MVI 7, Data

. Timing Diagram for LDA 3000H.
Timing diagram
= M, (opcode felch) M,{mamory read) My{mermaory read) M (memory read)
2 Ta | Ta T T T T T T T. CH T,
TR AN P e AT T AN
A YT | 20 > 17X 2o | > [20 [>--[X_[s >
A -An, (X708 | >-«(| 3A S GED AP R EABREED S EIBEEED &
AT AT AT AT
1o ‘L / J I\) , N\ IJ J ~\ [} }_
T
s/ |\ : \ F \ |
S \ _|/ Fa

Timing diagram for LDA 3000H

INTERFACING I/O AND MEMORY PROGRAMMING

INTRODUCTION:

Some addresses are assigned to memories and some addresses to input device.
Each memory location is assigned by an address.

Suppose that memory location are assigned that the address 2000 to 24FF. One
address is assigned to one memory location. Any one of these address is not assigned to
on input device.

The address which is not assigned to memory is assigned to input devices. Ex:
2500, 2501, 2502, and 2503... etc. and one address is assigned to each input device. In
this scheme all the data transform instruction of the microprocessor can be used for
data memory as well as input devices. Ex: MOV A,M This is valid for data transfer from
the memory to accumulator or form input device to accumulator. The memory mapped
I/P scheme is suitable for a small system.

INPUT MAPPED I/P SCHEME:-

In this scheme the addresses assigned to memory location can also be assigned to input
devices. Since the same address may be assigned to memory location or an input device,
the microprocessor must issue a signal to distinguish whether the address on the Bus is
for the memory location or /0 device. For this purpose
Intel 8085 microprocessor issues on (I0/M) signal for this purpose, when this signal is
high it indicates that it is for I/O device, and when this signal is low, it indicates that it
is for memory device and two extra instruction input and output are used to address
I/O device. The “IN” instruction is used to read the data of an input device. The ““OUT”
instruction is used to send the data to an output device. This scheme is suitable for a
large system.

MEMORY AND I/O INTERFACING:

Several memory chips and I/O devices are connected to the microprocessor on
address decoding circuit is employed to select the required I/O device or a memory chip.

l MEMORY I/0 DEVICE \I

— LI

I N
AICDTSS BUS 7 “:>
Kj . DATA BUS ‘—L‘—_VS
?

| J as | :
<L CONTROL BUS

e —

MICROPROCESSOR

Schematic Diagram for Memory and IO Interfacing.

MEMORY INTERFACING:-

MEMORY
CHIP SELECT
SIGNALS

0/ —

[/0C DEVICE
SELECT
SIGNALS

—pey

DECODER -

=] ENABLE

I_“
—Do——-o ENABLE

DECODER-2

:

Yo
)
2

lp‘ ,J

-

PROM
PROM
RAM

’
RAM
RAM
RAM

UNUSED
RESERVED
FOR FUTURE

INPLT DEVICE
INPUT DEVICE
OUTPUT DEVICE

OUTPUT DEVICE

UNUSED
RESERVED
FOR FUTURE

Interfacing of Memory and I/O Devices.

Table 7.1 Truth table for 74LS138

INPUTS
OUTPUTS
ENABLE SELECT
Gi G2A GzB | C B & | w |l |wm] B] %] % | %
X H H X X X H H H H H H H H
L X X X X X H H H H H H H H
B L L L L L H H H H H H H
H L L L L H H L H H H H H H
H L L L H L H H L H H H H H
H L L L H H H H H il E H H H H
" L L H L i H H H H L H H H
H L L H L H H H H H H L H H
H L L H H L H H H | H H H L H
- L L H H H H H H | H H H b L
® Demcees irrelevant
| ©) ‘5 — 1
Ay — —= A 0 EPROM
2 i 14
AL ——= 8 Hno—— EFROM 2
t
Aty = C 7 D—J RAM
13 12 RAM 2
n
‘ 7415138
_ 10
lom—s-d 628 Ye RAM &
LI, . Ye o> RAM §
7 1 Z RAM 6

r‘ GND

| Interfacing of Memory Chips using 74LS138.

Memory Locations for Various Zones

Decoder Output Memory Dex;ice Zones of the Address Space Memory Locations Address
Yo EPROM 1 7 %NE 0 0000 to 1FFF
Y EPROM 2 : ZONE 1 2000 to 3FFF
Y2 RAM 1 7 ZONE 2 4000 to 5FFF
Y3 RAKII 2_ 7 ZONE 3 - 6000 to 7FFF
Ya RAM 3 ZONE 4 8000 to 9FFF
Ys RAM 4 F ZONE 5 A0Q0 to BFFF
- Ye RAM 5 Bk ZbNE 6 C000 to DFFF
o \-(7_ RAM 6 ZONE 7 - E000 to FFFF

Here to decoders are employed i.e. decoder 1 and decoder 2.If the (I0/M) is high the

decoder 2 is activated and required 1/O device is selected. If (I0/M) is low, decoder 1 is
activated and required memory chip will be selected.
The address of a memory location or an I/O device is sent by the microprocessor,

the corresponding memory chip or I/O device is selected by the decoding circuit the
decoder task is performed by a Dbipolar PROM, PLA(Programmable logic

array),Comparator etc. IN this section we are using an interface of memory chip through
741L.5138.

G1, G2A and G2B are the enable signals A,B,C are the selected lines by Appling
the proper logic to select a line one output can be selected. i.e. Yo, Y1, Y2....Y7. These are
the 8 output lines. When it is selected it goes low.

From the truth table when the G1 is low or G2A is high or G2B is high all output

lines are high and similarly when G1 is high and G2A and G2B are low it act as a
decoder.

The memory location for EPROM 1 will be lie in the range of 0000 to 1FFF, these
are the memory location for ZONE O for the memory chip which is connected to the
output line Yo of the decoder. Similarly for other ZONES.

The inter memory address (64kb for 8085) has been divided into 8 ZONES address
lines A15, A14,A13 are applied to selected the lines A,B,C of the 74LS138. The logic
applied to these select a particular memory device, an EPROM or a RAM other address

lines are Ao,A1....A12 goes directly to the chip IO/M is connected to G2B when 10/M goes
low it is to memory read or write operation. G1 is connected to +5Vq. is supply and G2A

is grounded.

I/0 INTERFACING:-
ag—'+ A
Ay _2’* 9‘
A.—-’— (o}
Arg —"1
:'7 —= 7LLS138 vs p-12
_TLC G2 Yopt—o (NUSED
T e EXPANTION.
lOIﬁ-—sq 6! i
16
— Ve
GND
| Interfacing of I/0 Devices Usina 74L.S138.
Address of I/O Devices connected to 74LS138
Ass As A3 A2 A1l Ao Ag Ag Selected Corres- 10 |
Output ponding Device
Lines Address
1 1 1 1 1 0 0 0 Yo F8 input
Device 1
1 1 1 1 1 0 0 1 Y4 Fa Input
. Device 2
1 1 1 1 1 0 1 0 Yz FA Input
I e Device 3
1 1 1 1 1 0 1 1 Y3 FB Output |
N Device 1]
1 1 1 1 1 1 0 0 Ya FC Output |
Device 2 |
1 1 1 1 1 1 0 1 Ys FD Output |
_ Devce3|
1 1 1 1 1 1 1 0 Ye FE Unused |
1 t 1 1 1 1 1 1 Y7 FE Unused |

This is the interface of [/O device through decoder 74LS138.

As the address of an [/O device is 8 bits so only A8-A1S5 lines of address Bus are
used for I/0O addressing.

The address lines A8, A9, A10 are used as select lines A, B and C of the decoder.

The address lines of A11 -A15 are applied to the G2B through NAND gate. When
all the address lines (A11-A15) are high, the G2B is low.

10/M is applied to G1 when it goes high and is indicates for I/O read or I/O write
operation.

ARCHITECTURE OF 8255(PPI) :-
PPI= Programmable Peripheral Interface.
8255 PPI chip is also called as parallel input output port chip.

There are 24 1/P —O/P lines which can be individually programmed in two groups
of 12 lines each these [/O lines are arranged as 3 ports i.e. port A, port B and port C.
There are 2 individual groups of [/O pins called as group A and group B.

All the ports of 8255 can function independently as input or output by
programming the bits of an internal register of 8255 called controlled word register
(CWR).

PA, - PA,
Bidirectional data bus
D7_D° TR 7
PC,-PC,
PC,- PC,
Pb,- PB,

Power | +3V (Veo) —
supply GND —»

Internal Architecture of 8255 PPI.

The functional block diagram contains

The functional block diagram contains

1. Data Bus buffer

2. Read/Write control logic

3. Group A and Group B control.
4. Port A, Port B, Port C.

DATA BUS BUFFER :-

It is 8 bit bidirectional data bus buffer it is used to interface the 8255 data bus
with the system data bus.

Its outer pins are Do— D7 and it is connected to system data bus. The direction of
the data bus is to decided by the read/ write control signals. In read operation it
transmits data to the system data bus and in write operation it receives data from the
system data bus.

READ/ WRITE CONTROL LOGIC :
This block’s function is to accept i/ps from system control bus and address bus.

Here the control signals like RD,WR, CS and address signals Ao, Al are used.

Among these 5 signals RD and WR are connected to IOR, IOW or MEMR, MEMW
depending upon the mapping Ao, Al are directly connected to address lines Ao, Al of the

system address lines. The selection of 8255 is enabled or disenabled by CS signal. If

€S=0 the 8255 is selected and if CS=1 8255 is rejected.
GROUP A AND GROUP B CONTROL:

8255 IS DIVIDED INTO 2 GROUPS L.E. Group-A and Group-B. Group-A consists
of port A and port cupper and Group-B consists of Port B and port C lower. That means
each group consists of 12 pins. The selection of ports are done by mode operation.

Mode Operation- Mode O - Simple I/O -(Port A,B,C)
Mode 1 - Stroved I/0 -(Port A, B)
Mode 2 - Bidirectional Port - (Port C)

PORT A, PORT B AND PORT C:

The ports of 8255 PPI are Port A, Port B and Port C each port consists of an 8-bit

data I/P buffer. The function of port A, Port B and Port C are decided by the control bit
pattern of control word Register (CWR). The port C is divided into 2 groups PC upper
and PC lower. Port C pins can be used as simple i/o, hand shake signals and status
signals. It is used for coordination between port A and Port B.

Al
0

Ao Port/ Register Selection
0 Port A
1 Port B
0 Port C

1 CWR (Control Word Register)

PIN CONFIGURATION OF 8255 PPI CHIP :

Intel 8255 is a 40 Pin [.C. package. It operates on a single 5 vdc supply

s

Phy-PA7

Pl,=POY

=
>

INTEL <)21>°Eo-p<3
K—>

—_—
RESET —n
— 8255

| 3l 22

—_— fe——GND

X
o

Schematic Diagram of
Intel 8255 A.

Do - Dy H
Pins = 27 to 34
Types=1i/p - o/p
These are the 8-bit bidirectional data bus lines which are used to carry data or

control word to / from the microprocessor.

cS

Pins = 6

Types = i/p

These are above low signals which is used to select 8255.
f €S = 0 =8255isselected

cs = 1 =8255 is rejected
RD:

Pin = S

Types = i/p

It is a active low signal. It is used to send the data or status
information to the mp on the data bus.

WR
Pin = 36

Types = I/P

This is also an active low signal. It is used to write data or
control words into the 8255 PPI.

Al and Ao :
Pin = 8 and 9
Types = I/P

It 1s used to select the different ports and control word
Register (CWR).

mie—— o= —=

The operation of RD, WR and CS are :

WR Al Ao CcS I/P operation (Read)

S =

1 0 0 0 Port A to data bus

-l
—
c
—_
-l

Port B to data bus

o
—_
—_
o
-’

Port C to data bus

o
—_
—
—_
o

Not allowed

RESET
Pin = 35
Types = 1/P

This is an active high signal. It is used to reset the mp. After reset the control
word register is cleared and all ports are to be set to i/p mode.

PAo - PA: :(Port A Pins)
Pins = 1 to 4and 37 to 40
Types = I[/Por O/P

These are the 8-bit bidirectional pins used to send data to the device or to read
data from device connected with the 8255 chip.

PBo - PB7 :- (Port B Pins):
Pins = 18 - 25
Types

These are also 8-bit bidirectional pins and it is used to send data to the device or
to read data from device connected with the 8255 chip.

i/poro/p

PCo - PC7 : (Port-C Pins) :
Pins = 10 - 17
Types

These are the 8-bit bidirectional pins. These are divided to 2 sections i.e. (PCy4,
PCs, PCs, PC7 PC upper and PC Lower (i.e. PCo, PC1, PCs, PCs)

[/Por O/P

FUNCTIONAL BLOCK DIAGRAM OF 8259 PIC (PROGRAMMABLE INTERRUPT
CONTROLLER):

| Data el]
o0 () s K | Control logic
buffer —'~—-1 P =
: |]
I { = <7 = 7o -
[»
| - [X - L — _l_JJ_*_";A
RO ——»d -g- ! \ | S R,
Readwnite 4 In Prior IR,
L 9 togic =21 | service :\'j rosor ve’, m request IR,
[, pp—— | 1 | re;,s(c(N3 y | -'egnster R,
,-_3_) - | | OSR) i [(IRR) R,
@ | IR,
CASo «—9 Cascad | | [i :
ascade
CAS, «——»| bufferd PP ’L":a interrupt mask resgister (IMR) j
|comparator | —
CAS, 4—-0[_ | |
| |
|
|
SPEN —] | |
Power [—p V. —
supply {—> GNJ

Architecture of 8259 PIC.

(ARCHITECTURE OF 8259 PIC)
[t is a 28 pin programmable interrupt controller.
The 8259 PIC contains 8 blocks

(1) Data bus buffer

(2) Read / Write logic

(3) Control logic

(4) Interrupt request register (IRR)
(5) In service register (ISR)

(6) Priority resolves (PR)

(7) Interrupt Mask register (IMR)
(8) Cascade Buffer / Comparator

DATA BUS BUFFER:

It is a 8-bit bidirectional data bus is used to interface the 8259 PIC data bus with
the system data bus.

Control words and status information are transferred through the data bus buffer.
It is internally connected to the data bus and its outer pi8ns Do —-D7 are connected to the
system data bus directly. The direction OP the data bus is decided by the read / write
control signal.

When the read signal is activated, then it transmits data to the system and when
the write signal is activated then it receives data from the system data bus. The reading
and writing operation is achieved by IN and OUT mp instruction.

READ / WRITE LOGIC :
The block accepts i/p from the system control bus and address bus. The control

signals are RD and WR, CS and address signal Ao is used. For this 5 signal RD and WR

are connected to IOR, IOW, MEMR, MEMW depending upon the mapping. RD and
WR decides the operation is to performed i.e. write data to the 8259 or read data from
the

8259, Ao is directly connected to the address lines Ao of the system address lines CS is
connected to the Chip select decoder. It means the selection of the 8259 is enabled or

disenabled by €S signal.

Ifcs=0 8259 is selected

cs=1 8259 is rejected.

CONTROL LOGIC

This block has 2 pins INTA and INT as an i/p. INTA is connected to the interrupt

Pin of the mp when a valid interrupt is occurs it goes high INTA is a interrupt
acknowledgement signal from the mp.
INTERRUPT REQUEST REGISTER (IRR):

The interrupts at the Interrupt request (IR) lines are handless by the interrupt
request register internally. IRR is used to store all the interrupt levels which are
requesting service in it in order to serve them one by one on the priority basis.

IN SERVICE REGISTER (ISR) :

ISR is used to store all the interrupt levels which are being serviced. Each bit of
this register is set by the priority resolver and reset by the end of the interrupt command
word. The mp can read the contents of this register by issuing appropriate command
word.

PRIORITY RESOLVER (PR):

PR determines the priorities of the bits set in the IRR. To made decision the
priority resolver looks at the ISR. If the highest priority bit in the ISR is set, then it
ignores the new request. If the priority resolver finds that the new interrupt has a higher
priority that the interrupt currently being serviced, then it will set all the appropriate bit
in the ISR and send the INT signal to the mp for the new interrupt request.

INTERRUPT MASK REGISTER (IMR):

It is a programmable register. It is used to mask unwanted interrupt request by
writing appropriate control word. The IMR operates on the IRR. Masking of a higher
priority i/p will not affect the interrupt request lines of the lower priority. The mp can
read contents of this register without issuing any command word.

CASCADE BUFFER / COMPARATOR :

This functional block stores and compares the identification number (IDS) of all
8259s used in the system. This associate 3 Pins i.e. CAS2 — CASo. These are the O/P
when the 8259 is used as a master and the I/p when the 8259 is used as a Slave. As a
master, the 8259 sends the ID of the interrupting Salve device on to the CAS2 —-CASo
lines. The salve thus selected will send its programmed subroutine address on to the

data bus during the next one or two consecutive INTA Pulses. In buffer mode, it

generates an EN signal.

FUNCTIONAL BLOCK DIAGRAM / ARCHITECTURE OF 8251 USART:

s SN T 8 __,J Tansmt
ey DR ey) AR -
- @0

. +—— TxRDY
BCL— TxE

RxD
w
3
Fel
g ReRDY
ko RxC
;g SYNDET/BRKDET

Vee GND
Architecture of 8251 USART

DATA BUS BUFFER :

A 8-bit bidirectional data bus IS USED TO CONNECT 8251 usart DATA BUS TO
THE SYSTEM DATA BUS. It is internally connected to the data bus and its outer pins
Do-D7 are connected to the system data bus.

» For Read signal it transmits data and

» For write signal it receives data

» IN and OUT instructions are used for reading and writing operation
and it is depends upon the read / write control logic.

» USART = Universal synchronous / Asynchronous receiver /
transmitter.

READ / WRITE CONTROL LOGIC :

This device is used to control all the devices. After getting control signals from the
control bus it generates control signals for device operation.

_ CS Pin is used to active 8251 USART. When €5=0, 8251 USART is activated. The
C/D (Control / Data) signal decides which part to active.

This device is used to control all the devices. After getting control signals from the
control bus it generates control signals for device operation.

_ CS Pinis used to active 8251 USART. When €5=0, 8251 USART is activated. The
C/D (Control / Data) signal decides which part to active.
If C/D=1, the control part is selected.

C/D=0, the data part is selected.

The status of all signal are:

[¢/D RD WR Data transfer

0 0 0 1 Receiver data register of 8251 to data bus
0 0 1 0 Data bus to 8251 transmitter data register.
0 1 0 1 Status word to data bus

0 1 1 0 Data bus to control word

1 X X X Data bus tristated

TRANSMITTER SECTION:

Output register 4 TXD
: ~ {8)
8 t
- Transmitter Transmitter e
Data bus '{6 > buffer, < control > TxE
j register fogic o
(8) 3 D TxC

The transmitting sections are having the signals:
TxD - Transmit Data

TxRDy Transmitter Ready

RxE Transmitter Empty

T=C Transmitter Clock

The Transmitting Section consists of transmit buffer, transmit control block and
O/P register.

The transmitter Buffer register accepts data from the data bus buffer through
internal data bus if Cs=0, CID =0, RD=1 and WR=0

The contents of the transmitter buffer are automatically transferred to the O/P
register, if the O/P reg. is empty, the data is shifted serially on the TxXD Pin, along with
the appropriate bits are also added depending upon the mode selection i.e. synchronous
(Synchronous Char. Are sent) or Asynchronous mode (Start and stop bits are sent).

If transmitter buffer reg. does not contain any data then TxRDY=1 and allow mp to
sent next data for transmit control to indicate peripheral about in availability of data for
transmission.

If TxRDY=1, it indicates transmitter buffer is empty. Here the data 1st cone to the
transmit buffer reg. and then it transfers to the O/P register and finally from O/P reg it
transfers one bit at a time on TDx Pin.

If TxXRDY=0, it indicates that the transmitter buffer is not empty and contains
some data when last data is transferred from mp to the transmit buffer register at the
same time this last data is transferred from O/P register to the TxD Pin. It means the
transmit buffer reg and O/P reg. are both empty, then it gives TxE=1

TxC is used to apply —ve edge clock pulses.

The condition for making TxE=1 are

(i) Transmit buffer reg. is empty
(i) TxE=1
(i) CTS=o

(iv) Upon master reset signal.

RECEIVER SECTION:-

} e » RxRDY
J Transmitter Transmiter
Data bus—7; - buller £ - _control —+ SYNDET/BRKDET
- register T logic. —
. {8 R Ly e RxC

This section contains the signals

RxD= Receive data

RXRDY= Receiver ready
SYNDET/BRKDET=Synchronous detect / break detect

RxC= Receiver Clock

This section consists of Receiver buffer Register, receiver control logic and i/p reg.
The function of i/p reg. is to accept the serial data through RxD. The function of i/p reg.
is to convert the serial data to parallel from.

In synchronous mode it check the start bit and if the start bit is detected then the
bit after start are converted to parallel form and then transferred to receiver buffer reg.

In asynchronous mode the i/p reg. will accept the data and converts it to parallel
form and load into receiver buffer reg. if the SYNDET signal is 1.

In asynchronous mode after the data bits are accepted receiver checks
programmed parity bit. If both are not same then a error signal is generated.

After the data bytes are transferred from i/p reg. to receiver buffer reg. the control
logic generates a signal RXRDY to signal the mp about availability of data bytes to read
by mp.

MODEM CONTROL :

Telephone lines are used to send the data over long distance. The telephone lines
are analog in nature, so MODEMs (Modulator-Demodulator) are used to convert datas.
To communicate MOIDEMs with 8251, the 8251 USART provides a block called MODEM

control. The various signals under this unit are RTS, CTS, DTR and DSR.

DTR (DATA TERMINAL READY):-

After the terminal is mode ON, different operation will be performed. At the time of
data transmission / reception it generates a signal DTR to indicate its readiness for data
transfer.

DSR (DATA SET READY):

This i/p is used as a general purpose one bit inverting i/p port. Its status can be
checked by mp using a status read operation. This bit is used to check, if the data set is
ready while communicating with a modem.

CTS (CLEAR TO SEND):

When MODEM is ready to transmit data it makes CTS signal low . The terminal
after receiving CTS signal sends serial data character to the MODEM.

RTS (REQUEST TO SEND) :

Before the terminal is ready to transmit data and has a data character to be
transmitted the terminal makes RTS signal low.

FUNCTIONAL BLOCK DIAGRAM / ARCHITECTURE DIAGRAM OF 8257 DMA
CONTROLLER:

A, *» _.,_]
Ay - |
i ol
cs A 1%
A,] ' v BT
N + ONR |—e GRERZ
A; «— CONTROL |]
READY —¥ AND
WRQ 4| MoDE = |
HLDA —¥ SE ‘ —
MEMR <] LOGIC [CH3} |« pra)
MEMW *+— — | r i
AEN *— | -, 16
soes -+ i oA
TC .__—] »| CNTR. BACK3
MARK @

4

PRIORITY
| RESOLVER

v
V' INTERNAL BUS

The 8257 supports 4 DMA channels. That means 4 peripheral devices can request
for DMA data transfer through these channels at a time.

It has

(1) 8-bit internal Data buffer

(2) A read / write unit

(3) A Control unit and

(4) Priority Resolving unit along with a set of registers.

REGISTER ORGANISATION OF 8257:

The 8257 has 4 independent DMA channels . Each channel has a pair of 2 16-bit
registers:

There are 2 common registers for all the channels i.e. mode set registers and
status register. The address lines Ao-A3 are used to select one of the registers.

DMA ADDRESS REGISTERS:

Every DMA channel has one DMA address register. The Primary function this
register is to store the address of the starting memory location which is access by the
DMA channel.

TERMINAL COUNT REGISTERS:

Each channel of 8257 DMA has one terminal count register (TC) . It is a 16 bit
register. It ascertains that the data transfer through a DMA channel stops after the
required number of DMA cycles.

It means this register should be appropriately written before the actual DMA
operation starts.

This terminal count register are initialized with the binary equivalent of the no. of
required DMA cycles minus 1

After each DMA operation the terminal count register content will be decremented
by one and finally it becomes zero after required no of DMA cycles are evered.

MODE SET REGISTERS:

As per the requirements of system the mode set register (MSR) is used for
programming the 8257.

The Format of MSR is

f1- 3 % 3 If 1-
Enables Auto Load ——T T— Enables Channel 0

Enables TC Stop ——— —— Enables Channel 1
Enables Extended Write—————————————— ~——————————— Enables Channel 2
Enables Rotating Priority Enables Channel 3

Bit Definitions of the Mode Set Register.
Do -D3 Used to enable the 4 DMA channels of 8257
D6 If IC bit stops then the selected channel is disenabled. The IC stop bit

is zero.

D4 It is set when the rotating priority is enables. Otherwise fixed priority is

enabled.
D7 If it set, enables channel 2 for repeat block chaining operation.
D5 If it set, then the duration of MEMW and [OW signal is activated.

ADSTB (ADDRESS STOBE):

It is the higher byte of the memory address generated by the DMA controller in to
the Latches.

AEN (ADDRESS LATCH ENABLE):-This o/p is used to disable the system data bus and
control bus given by the CPU.,

TC (TERMINAL COUNT): It indicates to the currently selected peripheral.

MARK (The Modulo-128): It indicates to the selected peripheral that the current DMA
cycle is the 128t cycle since the previous MARK O/P . It will be activated after 128tk
cycles.

PROGRAMMABLE DMA CONTROLLER:

The bulk data transfer from I/O devices to memory or from memory to I/O devices
through the accumulator is a time consuming process. For this process Direct Memory
Access (DMA) technique is preferred.

In DMA data transfer scheme, data are directly transferred from an I/O device to
RAM or from RAM to I/o device.

OPERATING PRINCIPLE OF ADC 0801 SERIES:-

It’s a 8-bit successive approximation A/D converters. Its important features are:
on-chip clock generator, differential analog voltage input and no requirement of zero-
adjustment. To start interfacing the €S should be low. The range of clock frequency is
100KHZ to 800KHZ.The clock frequency is: F=1/(1.1 RC).

A typically range of R=10KQ to SOKQ. Corresponding to R=12kQ and C=120pf, the
clock frequency=632KHZ.

€S ———=q |\ 20 Vce
RO —=d 2. 19 ——— CLKR
WR ———=d 3 18 ——— DBQ(LSB)
CLKIN — o & 17 b———— DBy
TR ———q 5 ADC 080X o
N ——1'6 15 F——— DB
YiNG-) —— 7 % f————— DB
AGND »———— 8 13— DBg
VREF 2 9 12 ————= DB§
DGND » 10 N 08}

x = ‘0203-‘“5

Pin Diagram of ADC 0801 Series

INTERFACING OF ADC:

-
uF -

| -

s

= WK<

= -~

5
10K

Analog o Aan-L_
Input gy

:zg

It is a interfacing circuit of ADC 0808/0809 to intel 8085 microprocessor

«SV Precision

r—ee — PCk —————y — —
vee b N *
6 DBy-DB7 | 1 | Port A
L3 - - —/
Y
ADCODBOL i
‘ 8255 TouP
e —
r1 |
1q s 13 PCy
—~ CLK R WR I~ —J' | Port C lower |
l1
[o
LK IN NTR — Port C upper
PC? L
“
‘ VREF/2 H—e Dpen
|
- | |
[€S RO ViIN(-) AGND DGND
S IS M) AIPS. DS b i
| A [®
| W | - - _—
. |
—

Interfacing of ADC 0804 for + 5 V Analog Input Voltage.

. An a1

input is connected to IN3. 5Vdc is applied to pin no 12 i.e.(ref +ve).It should not be
from a stabilized power unit. The pin no 9 and 11 are connected to the 5Vdc stab:

power unit.

PROGRAM:

Mnemonics Operands Comments

MVI A,98H Initialize 1/O ports of
8255

OouT 0B

MVI A,03 Switch ON multiplexer
channel IN3

ouT 0A

MVI A,0B Start of conversion pulse

OuUT 0A without affecting

MVI A,03 multiplexer’s channel.

ouT 0A

IN 0OA Read E/C signal.

RAL Rotate accumulator left.

JNC READ [s conversion over? No,

IN 08 jump to READ. Read
digital o/p of A/D

converter.
STA FCS50H Store the result.
HLT Stop.

OPERATING PRINCIPLE OF DAC:

A DAC contains a ladder n/w. The n/w has i/p for binary bits of the digital word.
When the MSB=1, it produces an o/p current, (Irer)/4. The bit next to the MSB produces
(Irer)/4 and so on. It produces an o/p current or voltage proportional to the magnitude

Tout= I REF (1/2 Bn_1+1/4 Bn_2+...+1/2nBo)
Where Bo,Bn-1,Bn2.... Are the binary bits of digital word applied to DAC.
I Rer=(Vret) /R Where R=2.5K

INTERFACING OF DAC:

+5V Precision

20
vee

&
Input —— VN(e)

DBg-DB7 Port A

+

+12V

ADC 0804 it

2 A

To uP

PN < P TR

Bk R WR . 229k
2

Port C lower

12K
¢ = PC
CLK IN INTR 2 1 Port C upper
'NP‘I

VREF/2 |3 _, open

€5 RD VINE) AGND DGNO
1 7

2

The DAC 0800 is a simple monolithic 8-bit D/A converter. It has fast settling
time,100ns. It can directly interface to TTL,CMOS,PMOS and others. It operates at4.5V
to +18V supply. The supply V* may be either 5V or +12V. V-is kept -12V being easily
available on standard power supply unit.

PROGRAM:

Mnemonics Operands Comments

MVI A,98H Get the control word for
8255

ouT 0B Initialize ports.

MVI A,80 Get 80 for digital i/p to
DAC.

ouT 09 I[/P 80to DAC through
port B

HLT Stop.

For bipolar operation the following modification in the circuit has to be done.

Connect pin 2 of DAC to non-inverting terminal of Op-amp. This common point is
earthed through a S5KQ resistor. The connection of pin4 of DAC and inverting terminal
Op-amp will remain as before.

INTERFACING OF TRAFFIC LIGHT CONTROL SYSTEM USING 8255:

-
(=]
S |
Pr20 3
PAY D Y |
PA)O R 1\
;—
e 0 2 N
o o e
& a a ' SS <
o~ L, a o a
LC«_} W———F g
G Y R | 00O
S R G
Y N g

O
PB1 O Y Y — Yellow
A

|P82 O 6 G — Green
Traffic Light Control.

All the ports of 8255 have been programmed as O/P ports. The control word to
make all the ports o/p ports in mode O operation is 80H. The connection of pins of the
ports to LED have been made through buffer(7407).+ve logic have been used to switch
on LEDs. Three types of LEDs have been used to switch on LEDs.

3 types of LEDs are Yellow, Red, Green.
Yellow to make alert

Red does not allow crossing.

Green allow crossing.

PROGRAM:
Mnemonics Operands Comments
MVI A,80H Get control word for 8255
ouT 0B Initialize ports of 8255
MVI A,01
ouT 09 Red ON for South
ouT 08 Red ON for North
MVI A,44 Green ON for East and West.
ouT 0A
CALL DELAY 1
MVI A,22 Yellow ON for East and West.
ouT 0A
MVI A,02
ouT 09 Yellow ON for South
ouT 08 Yellow ON for North
CALL DALAY 2
MVI A1l Red ON for East and West
ouT 0A
MVI A, 04
ouT 08 Green ON for North
ouT 09 Green ON for South
CALL DELAY 1
MVI A22 Yellow ON for East and West
ouT 0A
MVI A02
ouT 09 Yellow ON for South
ouT 08 Yellow ON for North.
CALL DELAY 2

INTERFACING OF STEPPER MOTOR CONTROL:

—

Port A

/o Port __?;.
8255 Paz | Buffer] Ampl Fier

Microproce ssor

Pole windings of
Stepper Motor
interfacing of Stepper Motor.

The necessary steps to interface the 8051 with the stepper motor.

1. The ohm meter is used to measure the resistance of the leads. It is used to
identify which COM lads are connected to which winding leads.

2. The common wires are connected to the +5v side of the motor power supply.

3. The 4 bit of 8051 i.e. P1.0, P1.1, P1.2, P1.3 are used to control the 4 leads of

the stator winding used a driver to energized the stator. The driver has an internal diode
to take care of back emf.

PROGRAM: To rotate the stepper motor continuously.

MOV A,# 66H Load step sequence
Back: MOV P1,A Issue sequence to motor

RR A Rotate right clockwise

A CALL Delay Wait some time

S JMP Back

Continue doing this

Delay MOV R, # 100 R.=100
L1: MOV Rs, # 255 Rs=255
L2: DJNZRs Lo

DNZ Ro,Ls

RET

Relationship between steps per second and rpm

Steps per second= (Rpm * Steps per revolution)/60.

Deé
e
end s
Locen
'1@

: /\"”“

Introduction:

8086 is a 16-bit of microprocessors. Its internal data lines are of 16. The 8088 and 80188 have their internal

architecture of 16 bit but their data lines are only 8. All these microprocessors come under Intel 8086’s family.

8086, 80186,80286,8088 and 80188 microprocessor have the same basic set of registers, instruction and

addressing modes.

The 8086 is a 16 bit, N-channel, HMOS microprocessor the term HMOS is used for “high-speed MOS”. Itis a

16-Bit Microprocessor

set of 40 pins IC package. The types of packaging are DIP (dual inline package).

ADy-AD;s are the 16 low order address line 8 LSB of data are transmitted on ADy-AD; & 8 MSBs of data on

ADg-AD1s.

PIN CONFIGURATION OF 8086

GND | 1 NS 40
AD,, | 39
AD1 | 3 18
AD:u: | 4 37
ADn |3 36
ADw | 6 35
ADs | 7 34
ADs | 8 13
AD: | 9 < 32
ADs | 10 0 31
ADs | 11 g 30
ADq | 12 29
AD: 13 28
AD: | 14 27
AD; | 13 26
ADo | 1 25
NMI | 17 24
INTR | 18 23
CLK | 19 22
GND ‘ 2 21

| Vec

8086 pm

AD1s

A1sl/S

A1iSs

A18/Ss

Ar2/Se

BHE/S:

MN/MX

RD

RQ/GTo (HOLD)
RQ/GT» (HLDA)
LOCK (WR)

Sz (WI0)
S{DT/R)

So (DEN)

QSc (ALE)

QS (Wﬁ)
TEST

READY

RESET

configuration

ADo'ADls:
Address / data lines. There are low-order address buses. They are multiplexed with data.

When AD lines are used to transmit memory address the symbols A is used instead of AD, EXP: A0-A15 &
when the data are transmitted D is used instead of AD. EXP: Dg-D7, Dg-D1s or Do-Dss.

Aje-Ago (output):
There are the high order address lines those are multiplexed with status signals.
As6/S3, Ar7/s4=A16 & Ay7 are multiplexed with segment identified signal S; & S,.
Ass/ss=Aqg is multiplexed with the status signal S5.
A1o/Se=A19 is multiplexed with status signal.

BHE/S; (o/p):-
Bus high enable /status signal .during T1 is low ,it is to enable data into the most significant half of data bus

Dg-D;5 8-bit device connected to upper half of data bus use BHE signal is available during T3 and T4.

RD (read):-
It is used for read operation. It is active when it is low

READY (input):-

The addresses | /O or memory sends acknowledgement through this pin. When it is high it indicates that the
peripheral is ready to transfer the data.

RESET(i/p):-

Used for system reset. It is active when it is high
CLK (i/p):-

Clock .10 MHz
INTR:-

Interrupt request

NMI (i/p):-
Non-maskable interrupt request
TEST (i/p):-
Wait for test control when it is low the microprocessor continuous execution otherwise waits.
VCC:-
Power supply +5v dc
GND:-

Ground

MINIMUM MODE-MAXIMUM MODE:-

There are 2 available modes of operation for the 8086/8088 microprocessor. i.e. maximum and minimum mode
maximum mode operation is obtained by connecting the mode selection pin. MN/MX to +5v and maximum
mode to ground that pin.

MINIMUM MODE OPERATION:-

Minimum mode operation is the least-expensive way to operate the 8086/8088 microprocessor. all
the control signal for the memory and D10 are generated by the microprocessor the minimum mode
allows the 8085A ,8bit peripheral to be used with the 8086/8088 with the out any special consideration.

Crystal Oscillator vee
,_m_ MN/MX
Clock Generator cik RD
82844 RAM,

o = s R PRON,

Peripherals,
/10 = Interrupt

Controller,
DMA

From [nterrupt ——— [NTR Controller

Controller etc,

o o —

Contrallu" ALE =

F GND —— _0’ Latch ‘ Add

rom DMA —= HOLD * ress
Controller BHE 8282 |
To DM 20r] J
- HLDA
C:Mm?lor » ADo'Aots< ADDR/DATA J
Arg-A19
8086 CPU
Transceiver
8286
o1/R .
OEN 5t
L

Typical 8086-based Computer System in Minimum Mode Configuration

For the minimum mode operation the pin MN/MX is connected to 5v dc supply IC. MN/MX=VCC

INTA (o/p):-
Interrupt acknowledge on receiving interrupt signal the process issues an interrupt acknowledge signal. It is
an active low signal.

ALE (o/p):-

Address latch enable .it goes high during T1 the microprocessor sends this signal to latch the addresses.
DEN(o/p):-

Data enable .it is used for as output enable signal .it is active low.
DT/R (o/p):

Data transmit/receive. It is used to control the direction of data flow through the transceiver when it is high bit sent
the data and when it is low it receives the data

M/I0 (o/p):-

When it is high the microprocessor wants to access the memory and when it is low the microprocessor

access the I/p device
WR (o/p):-

When this signal is low it perform the write operation for memory and i/o device
HLDA (o/p):-

Hold acknowledge .it is issued by the microprocessor when it receives hold signal .it is an active high signal.
When the hold request is removed HLDA goes low

HOLD (1/0):-

When another device in microprocessor system wants to use the address and data bus, it sends a HOLD
request to CPU through this pin , it is also a active high signal

MAXIMUM MODE OPERATION:

GND
Crystal 1
] CLK
Oscillat e e
scillator MN/ TR - MRDC (MEMR)
D -S-o 29 BUS
— - MW TC ME MW
l_' 'j 3] S Controller MWTC (MEMW)
s s = 5 8288 fORC (10R)
g;n.c‘r:hr NC AMWC fowe (Tow)
RESET DEN =
4 INTA
DU/R
ATOWC
8086 CPU = P
518
— 0t Latch
(OCK — . GND 8353 =
R/, BHE 20r3 ADDRESS BUS
A
Ra/8T, ADp-AD15 ADDR/DATA J
Ag- Aty L.
e —]

Transceiver
8286
(2)

OATA BUS

ROM,
PROM,
Peripherals,
Interrupt
Controller,
Dma
Controller,
ete

Typical Intel 8086-based Computer System in Maximum Mode Configuration

Maximum modes operation differs from minimum mode in that same ctrl signal must be externally

generated.

This requires the addition external bus controller there are not enough pins on 8086/8088 for bus ctrl, so for
maximum mode operation same new pins and few features have replaced some of them. This maximum mode is

used when the system contains external co-processors such as the 8087 arithmetic co-processor.

For the maximum mode operation the pin MN/MX is mode low it is grounded.

Qs;, QSo (o/p):-

Instruction queue status.

Qs QSo

0 0 no operation

0 0 1% byte of opcode from queue

=
o

empty the queue

1 1 subsequent byte from queue

0,51, 52 (o/p):-

These are the signal connected to the controller 8288

S, S: So
0 0 0 interrupt acknowledge
0 0 1 read data fromi/o port
0 1 0 write data from i/o port
0 1 1 halt
il 0 0 opcode fetch
1 0 1 memory read
1 1 0 memory write
1 ik 1 passive status
LOCK (o/p):-

It is an active low signal when it is low all interrupts are masked and no hold request are generated

Q/GT1, RQ/ GT2;-

Local bus priority control other processers ask the CPU though these lines to release the local bus RQ/GTO0
has higher priority than RQ/GT1,

In maximum mode operation WR, ALE,DEN, DT/R etc, are not available directly from the processer . These

signals are available from the controller 8288.

CLK:-
Clock I/p

ALE:-
Address latch enable.
DEN:-
Data bus enable.
DT/R:-
Data transmit/receive.
AEN:-
Address enable.
CEN:-
Control enable.
ALOWC:-
Advanced I/O write command.
I0WC:-
|/p write command.

IORC:-
|/O read command.

AMWC:-
Advance memory write control.

MWTC:-
Memory write control.
MRDC:-

Memory read control.

INTA:-
Interrupt acknowledge.

Architecture of 8086 microprocessor:-

INTEL 8086 AND INTEL'S OTHER 16-BIT MICROPROCESSORS

Generol— AH AL ES Seqn;ent
purpose registers
reqgisters, BH gl‘ gg F ond
pointers CH L nnst(uctuon
& DH DL DS pointer
index SP P
registers B8P
Si
DI
{} Address
lines
: Bus Dota
16-Bit ALU interfoce lines
i
FLAGS
BHE/S7.RD,WR
INTA , ALE
DT/R , DEN
6—Byte
instruction
queue
CLK i \} Control
veo Decoding circuitry, lines
GND —e= timing ond control unit
MN/MX —1

Block Diagram of Intel 8086 Microprocessor

The 8086 microprocessor contains 2 independent units i.e. bus interface unit bus interface unit (BIU) and
an execution unit (EU).
The general purpose registers, stack pointer, base pointer and index registers, ALU,
Flag register, instruction decoder and timing and control unit constitute execution unit (EU).The segment register,
instruction pointer,6-byte instruction queue are associated with the bus interface unit (BIU).
The BIU handles transfer of data and address between the processor and memory i/o device.
While EU executes instruction the BIU fetches instruction. This type of overlapped operation of the
functional units of a microprocessor is called pipeline.
REGISTERS OF INTEL 8086:-

The 8086 contains the following registers

(1) General purpose registers
(2) Pointer and index registers
(3) Segment register
(4) Instruction pointer
(5) Status flags.

(1) GENERAL PURPOSE REGISTERS:-

There are four 16-bit general purpose register: AX, BX, CX and DX. Each of these 16-bit register are
further subdivided into 2 8-bit registers i.e.
REGISTERS OF INTEL 8086:-

The 8086 contains the following registers

1) General purpose registers
2) Pointer and index registers

4) Instruction pointer
5) Status flags.
(1) GENERAL PURPOSE REGISTERS:-

(
(
(3) Segment register
(
(

There are four 16-bit general purpose register: AX, BX, CX and DX. Each of these 16-bit register are
further subdivided into 2 8-bit registers i.e.

16-bit register 8-bit high order register 8-bit low order register
AX AH AL
BX BH BL
CX CH CL

DX DH DL

Register AX is serves as an accumulator .register BX CX, and DX are used as general purpose registers
sometimes it serves as special purpose register. BX serves as a base register for the computation of
memory address. XC is used counter in case of multi iteration instruction. When the content of CX
becomes zero such instruction terminate the execution. DX is also used for memory addressing when the
data are transferred between i/o port and memory using certain i/o instruction.

POINTER AND INDEX REGISTER:-

(1) stack pointer ,SP

(2) Base pointer, BP

(3) Source index S|

(4) Destination index ,DI

STACK POINTER:-

A 16 bit register which is used to store top of the stack , it is pointing to a memory location inside the stack
segment in main memory .

The contain of the stack pointer is added with the stack segment to get the physical address of the top of

stack pointer .

BASE POINTER:-

16 bit register which is also holds the offset address of stack segment.
It may locate any memory location inside the stack segment.

It may locate any memory location inside the stack segment.
SOURCE POINTER:-

These are used to store the offset address of data and extra segment.

Source index store the offset Address of the instruction and the destination index stores the extra segment
of instruction.

SEGMENT REGISTER:-

There are 4 segment register in 8086 i.e.

(1) Code segment
(2) Data segment
(3) Stack segment
(4) Extra segment

In 8086 the memory of 8086 are divided in to 4 segment i.e. code, data, stack and extra .

Starting Memory Base
Address of Segments Registers
Segments
G ¢ |CS
Segment
Loooo ’——
Oatn o
Segment
60000
l Skack 6000 SS
Segment
80000
1 00
Segment

Memory Segments

CODE SEGMENT:-

The code segment of the memory holds instruction codes of a program.

Code segment points to the starting address of the codes segment.

DATA SEGMENT:-

The data variable and constants given in the program are held in the segment of memory .

Data segment points to the starting address of the data segment.

STACK SEGMENT:-

Stack segment holds address and data of subroutines. it also holds the contents of registers or memory
location given in PUSH operation .

EXTRA SEGMENT:-

The extra segment holds the destination address of some of certain string instruction and so on.

A segment register pointer to the starting address of memory segment currently being used.

The content of the stack pointer and the content of stack segment register are used to compute the
address the stack loOcation to be accessed.

The index register i.e. Sl and DI together with segment register DS and ES used to perform string operation

INSTRUCTION POINTER (ip):-

It also refers as a program counter.

It holds the address of the next instruction that means it point to the memory location in the code register
to get the instruction address.

After fetching each instruction the instruction pointer is incremented according to the size of the
instruction.

STATUS REGISTERS:-

8086 microprocessor contains a 16 bit status register, it is also called as flag register or program status
word (PSW).

There are 9 status flags and other 7bit are not used. The status flag are:

(1) Carry flag

(2) Parity flag

(3) Auxiliary carry flag
(4) Zeroflag

(5) Sign flag

(6) Trap flag

(7) Interrupt enable flag
(8) Direction flag

(9) Over flow flag.

16. 94 1392 31, 109 B8 7 6.5 4 3 2 1 0=-8itNo;

x| x| x| x|oF|oF| IF|TF|SF|ZF| X |AF| X |PF| X |CF [=-Stotus flags

Over flow flag J EIBE .‘ f L—Ccrry flag
Direction flag — — ‘ L————— Parity flag
nterrupt e m | Auxiliory carry
enable flag T — flog

Trap flog _— ———————— Zero flag

= Sign flag
Status Flags of Intel 8086

Out of these 9, 6 are the conditional flag and other 3 are the control flag.

The 6 conditional flag are CF, AF, ZF, SF, PF and OF. These flag are set or reset by the processor
after the execution of arithmetic or logical instruction.

The 3 control flag are TF, IF and DF . These flag are set or reset by the programmer as required by
certain instruction in the program.

All the flags except TF, OF, IF and DF are same as in 8085.

The OF set to 1, when result of signed operation is out of range.

The TF is set to 1 that means a program can be run in single-step mode.
The IF is set to 1, when the INTR of 8086 is enabling.

The DF is used for string operation .it is set to 1, when the string byte are accessed from higher
memory address to lower memory address.

INTERRUPTS:-

An interrupt may occurs at normal program execution of a microprocessor .an interrupt
caused by a external device is called as hardware interrupt. A microprocessor can also be interrupted by
the internal abnormal condition like overflow, division by zero etc.

A programmer can also interrupt microprocessor by inserting INT instruction at desired point in
the program while debugging a program. Such interrupt is called software interrupt.

8086 microprocessor can handle up to 256, hardware and software interrupts to store the
starting address ISS for 256 interrupts 1kb memory from 0000 to O03FF is set . The starting address of an
ISS stored in the 1kb memory space is called interrupt vector or interrupt pointer . From 4bytes memory 2
bytes for store the CS and 2bytes for IP values.

1kb memory space act as a table to contain interrupt vector and hence it is called interrupt
vector table or interrupt pointer table .the256 IP is number from 0 to 255 .

1*' 5 interrupt are specific interrupt such as divide-by-zero, single-step control, non-maskable
interrupt NMI, break point and overflow interrupt. The next 5 to 31 are reserved for other advanced
microprocessor of Intel Corporation. The upper 224 interrupt from type 32 to type 255 are available to
user for hardware and software interrupt.

The 8086 has 2 hardware interrupt. It can’t be disabled by user by using software. It is used by
the processor to handle emergency condition.
The ISS for type 2 interrupt saves program after power failure in some RAM provided from the

point at which it was interrupt.

INTR is a maskable interrupt it can be enable /disenabled using interrupt flag (IF) .after receiving
INTR interrupt from an external device, 8086 acknowledges through INTA signal.

Pointer for
Type255

Pointer for
Type N

Pointer for
Typé4

Pointer for
Typed

Pointer for
Type2

Pointer for
Typel

Pointer for
TypeO

{

:

~
~

F

{

\

J A
. b =

~
y

{

{

¢

\

(CS] for typel

{

[IP] for typet

(CS] for typeO

{

[IP] for typeO

4N+4

00080
007E
C07C

\
|
J
00014
ooovo}

OOOOCJ

000084
’

000043

00000~

Available for users
from type32 to
type224 for INT

and INTR instructions

Reserved
but uncssigned

Reserved for INTO
instruction (overfiow)

Reserved for
Breck—point interrupt

Reserved for
nonmaskable interrupt

Reserved for
Single—-step

Reserved for
divide by zero error

Interrupt Pointer Table for Intel 8086

ADDRESSING MODE OF INTEL 8086:-

An instruction performs specific operation on the specified data .hence, the programmer must
specified the required data for an instruction. The way by which an operand is specified for an
instruction is called addressing mode.

The 8086 has 8 addressing modes i.e.

register addressing mode
immediate addressing mode
direct addressing mode

register indirect addressing mode
based addressing mode

indexed addressing mode

based index addressing mode
based indexed with displacement

(1) REGISTER ADDRESING MODE:
In this addressing mode the operand is placed in 1 of the 16bit or 8bit general purpose registers.
Ex: MOV AX, CX
ADD AL, BL
ADD CX, DX
(2)IMMEDIATE ADDRESSING MODE:

In immediate addressing the operand is specified in the instruction itself ,

Ex: MOV AL, 35H

MOV BX, 0301H
MOV [0401], 3598H
ADD AX, 4836H
Displacement: it is an 8bit or 16bit immediate value given in the instruction
Base: it is the content of the base register, BX or BP
Index: it is the content of the index register, Sl or DI
(3)DIRECT ADDRESSING MODE:

In direct addressing mode the operands offset is given in the instruction as an 8bit or 16bit
displacement element.

Ex: ADD AL, [0301]
ADD [0301], AX

(4)REGISTER INDIRECT ADDRESSING MODE:

The operand offset is placed in any 1 of the register BX, BP, Sl or DI as specified in the instruction
Ex: MOV AX, [BX]

ADD AL, [SI]

(5) BASED ADDRESSING MODE :

The operand offset is the sum of and 8hit or 16bit displacement and the contents of the based

register BX or BP .BX is used as base register for data segment and BP is used as a base register for stack

segment.

Ex: MOV AL, [BX+05]

MOV AL, [BX+1346H]

(6) INDEX ADDRESSING MODE:

The operand offset is the sum of the content of an index register S| and DI and 8bit or 16bit
displacement

(7) BASED INDEXED ADDRESSING MODE:

The operand offset is the sum of the content of a base register BX or BP and an index register Sl or DI
Ex: ADD AX, [BX+SI]
MOV CX, [BX+SI]

(8)BASED INDEXED WITH DISPLACEMENT:

In this addressing mode the operand offset is given by offset = [BX or BP]+[SI or DI]+8bit or 16bit
displacement

Ex: MOV AX, [BX+SI+05]

MOV AX [BX+SI+1235H]

BASICTIMING DIAGRAM OF INTEL 8086 MICROPROCESSOR:

One Bus Cycle

(LK i \jﬂL/'LL
ADp-AD1s | X Address ---ﬁ(_ l"Oum
A%-Atg 20 L
N fnmss X Status }C
MN/FX L J
M/T0 l/ I ‘Y l
atE J ‘1 |8
BRE/S) [7
e |/
AD J_.J..L =
or/R /._.
DEN r_'_‘i —1
' Timing Diagram of Intel 8086 for

~ Memory Read in Minimum Mode

CLASSIFICATION OF 8086 INSTRUCTIONS:

Instruction are classified a the basic of function of they perform. There are categorized into:-

1. Data transfer instruction

2. Arithmetic instruction

3. Logical instruction

4. Program Execution transfer/Branch instruction

1.DATA TRANSFER INSTRUCTIONS :

This instruction performs all the data movement operation like MOV, Load, Store, Exchange,
I/P,0/P,PUSH,POP instruction.

The source of the data may be a register memory location, port etc . The destination may be also
the same.

Ex: MOV, XCHG, PUSH, POP, LDS, LEA, IN,OUT ETC.

2. ARITHMATIC INSTRUCTIONS:

The instruction performs all the arithmetic operation like addition, substraction, multiplication,
division, increment, decrement, comparison, etc.

Ex: ADD, SUB, INC, MUL, DIV, CMP, etc

3. LOGICAL INSRTUCTION :

This perform all the logical operation like AND, OR, X-OR, NOT, TEST ETC

4. PROGRAM EXECUTION TRANSFER OR BRANCH INSTRUCTION:

The instruction of this group transfers program execution from the normal sequence of instruction .to the
specified destination or target.

After the execution of such instruction, the processor starts instruction
Ex: IMP, JC, JZ, CALL, RET etc

ITERATION CONTROL INSTRUCTIONS:

Instruction like loop loopz, loopne etc are come under this group

INTERRUPT INSTRUCTION:

Instruction such as INT, INTO and IRET are comes under this group.

PROCESS CONTROL INSTRUCTION :

Instruction like flag manipulation and machine ctrl. Are comes under this group.

PROCESS CONTROL INSTRUCTION :

Instruction like flag manipulation and machine ctrl. Are comes under this group.
Ex : CLC< CLD< STC <LOK etc

STRING INSTRUCTION:

It handles the string operation such as string movement, comparison, scan, load and store.

Ex.; MOV S/MOV SB/ MOV SW, CMPS/CMPSB/CMPSW, SCAS/SCAB/SCASW, LODS/LODSB/LOSDW etc.

	Microcomputer
	Microprocessor
	8085 Microprocessor – Functional Units
	Accumulator
	Arithmetic and logic unit
	General purpose register
	Program counter
	Stack pointer
	Temporary register
	Flag register
	Instruction register and decoder
	Timing and control unit
	Interrupt control
	Serial Input/output control
	Address buffer and address-data buffer
	Address bus and data bus

	Address bus
	Data bus
	Control and status signals
	IO/M
	S1 & S0
	Power supply
	Clock signals
	Interrupts & externally initiated signals
	Serial I/O signals
	Data transfer instructions in 8085 microprocessor
	Logical instructions in 8085 microprocessor
	Branching instructions in 8085 microprocessor
	Stack I-O and Machine Control Instructions
	8085 program to add two 8 bit numbers
	8085 program to subtract two 8-bit numbers with or without borrow
	AND
	OR

