

LABORATORY MANUAL LABORATORY MANUAL FOR ENGINEERING CHEMISTRY PRACTICAL Pr-2(b)

PREPARED AND DEVELOPED BY

SULAGNA DAS, Sr. Lecturer, Chemistry&

Jagannath Oram, Lecturer, Chemistry

Jharsuguda Engineering School

<u>Jharsuguda</u>

FERING SCR

Table of Contents

Experiment	Page No.
EXPERIMENT No1: Preparation of Carbon	
dioxide gas in Laboratory and study its physical &	2
chemical properties	
EXPERIMENT No2 : Preparation of Ammonia	
gas in Labor <mark>atory and study its physical &</mark>	5
chemical prope <mark>rties</mark>	
EXPERIMENT No3: Preparation and	
Crystallization of Copper sulphate from Copper	8
carbonate	
EXPERIMENT No4(i): Volumetric analysis	
(TITRATION)-Acidimetry-Determination of the	10
strength of an acid solution by using a standard	10
alkali solutio <mark>n.</mark>	
EXPERIMENT No4(ii): Volumetric analysis	
(TITRATION)-Alkalimetry-Determination of the	
strength of an alkali solution by using a standard	13
acid solution.	
EXPERIMENT No5: SALT ANALYSIS-Test for	16
Known Acid radicals in the given salts	10
EXPERIMENT No6: SALT ANALYSIS-Test for	10
Known Basic radicals in the given salts	19
EXPERIMENT No7: SALT ANALYSIS-Test for	
unknown Acid radicals in the given salts	22
EXPERIMENT No8: SALT ANALYSIS-Test for	25
unknown Basic radicals in the given salts	26
EXPERIMENT No9: SALT ANALYSIS-Test for	AND A CONTRACT OF A CONTRACT O
unknown acid and Basic radicals in a given salt.	G S 31

EXPERIMENT No.-1: Preparation of Carbon dioxide gas in Laboratory and study its physical & chemical properties

Aim of the experiment:

To Prepare of Carbon dioxide gas in Laboratory and study its physical & chemical properties.

DILUTE HOI

PAPER

COVER

MARBLE

CO, GAS

f

CHIPS

Apparatus Required:

- 1. Woulf's Bottle
- 2. Thistle funnel
- 3. Delivery tube
- 4. Rubber cork
- 5. Gas Jar

Chemicals Required:

- 1. Marble Chips(CaCO₃)
- 2. Dilute HCl
- 3. Litmus Paper
- 4. Lime water
- 5. NaOH solution
- 6. Phenolphthalein solution

Theory:

In the laboratory, CO₂ gas is prepared by the action of dilute HCl upon marble chips(CaCO₃)in a Woulf's bottle.

WATER

Chemical Equation:

$$CaCO_{3(s)} + 2HCl_{(aq)} \longrightarrow CaCl_2 + H_2O + CO_2$$

marble chips

Procedure:

- 1. Fit a Woulf's bottle with rubber cork, thistle funnel and delivery tube in air tight condition.
- 2. Introduce a few small size marble chips(CaCO₃) into the Woulf's bottle by opening one of its mouth.
- 3. Then pour a little amount of water into the Woulf's bottle through the thistle funnel so as to cover the marble chips(CaCO₃). Insert the thistle funnel more into the Woulf's bottle such that its extreme end remains inside the water.

- 4. Then add a little quantity of the dil. HCl through the thistle funnel and collect the CO_2 gas is in the gas jar by upward displacement of air.
- 5. Test the collected gas in the gas jar by showing a burning matchstick at the mouth of the gas jar.
- 6. Study different physical and chemical properties of CO₂ gas.

Observations:

Physical Properties:

EXPERIMENT	OBSERVATION	INFERENCE
1. Observe the colour of	1. Colourless	 CO₂ is a Colourless gas
the gas.		
2. Observe the odour of	2. Odourless	2. CO₂ is a Odourless gas
the gas.		
3. Show a glowing splinter/	3. The match stick will	3. CO ₂ gas neither combustible
burning matchstick into	extinguish.	nor supporter of combustion.
a tes <mark>t tube full of CO</mark> 2		
gas.		
4. Collect the gas in a test	4.The level of water inside the	4. CO2 gas is highly soluble in
tube half filled with	test tube is found to be	water.
wate <mark>r & shake</mark>	increased.	
vigor <mark>ously by putting</mark>		
the thumb at its mouth.	17 E.	
Then remove the thumb		1.2
and observe the	Discouted and American State	
level/volume of water		
inside the test tube.		1231

Chemical Properties:

EXPERIMENT	OBSERVATION	INFERENCE		
1. Show a piece of moist	1. The blue litmus change	1. CO ₂ gas is acidic in nature.		
blue litmus paper to the	to red.			
gas.	CHERING BY			
2. Pass the gas through	2. Lime water turns milky.	2. CO ₂ gas is present which		
lime water solution.	→ ¥	produces CaCO ₃ solution with		
		lime water.		
$Ca(OH)_2 + CO_2 \longrightarrow CaCO_3 \checkmark + H_2O$ milky white ppt				

 Continue to pass the gas through lime water solution in excess. Then boil the solution. 	excess passing of gas and reappears on boiling.	soluble salt of Calcium bicarbonate and reappears on gently heating due to formation of CaCO ₃ again.		
Ca(I	$CaCO_{3} + H_{2}O + CO_{2} \longrightarrow Ca(HCO_{3})_{2}$ Soluble $Ca(HCO_{3})_{2} \xrightarrow{\Delta} CaCO_{3} + H_{2}O + CO_{2}$ Soluble			
 Pass the gas through 2-3 ml of very dilute solution of NaOH containing one drop of phenolphthalein indicator solution. 	4. The solution turns pink to colourless.	4. CO ₂ gas is acidic in nature.		
 Mg-Ribbon Test: A burning Mg ribbon was introduced into the gas jar having CO₂ gas 	5. The Ribbon burns brightly producing white residue with black solid.	5. Although CO ₂ gas is a non- supporter of combustion it burns the Mg- Ribbon as it breaks CO ₂ into C and O		
	Mg + CO ₂ → MgO + C White Black Residue Solid			

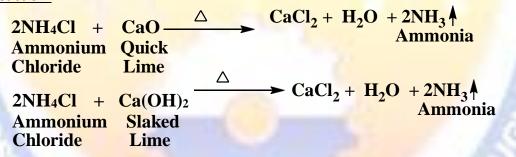
EXPERIMENT No.-2: Preparation of Ammonia gas in Laboratory and study its physical & chemical properties

Aim of the experiment:

To Prepare of ammonia gas in Laboratory and study its physical & chemical properties.

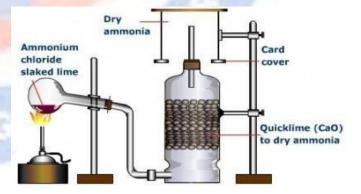
Apparatus required:

- 1. Round bottom flask
- 2. Delivery tube
- 3. Gas jar
- 4. Clamp stand
- 5. Cork
- 6. Test tube


Chemicals required:

- 1. Solid ammonium chloride(NH₄Cl)
- 2. Quick Lime(CaO)

Theory:


Ammonia gas is prepared in the laboratory by heating an intimate mixture of solid NH₄Cl and powdered quick lime (CaO) or dry slaked lime Ca(OH)₂ in the ratio 1:3 the gas is collected by downward displacement of air as it is lighter than air.

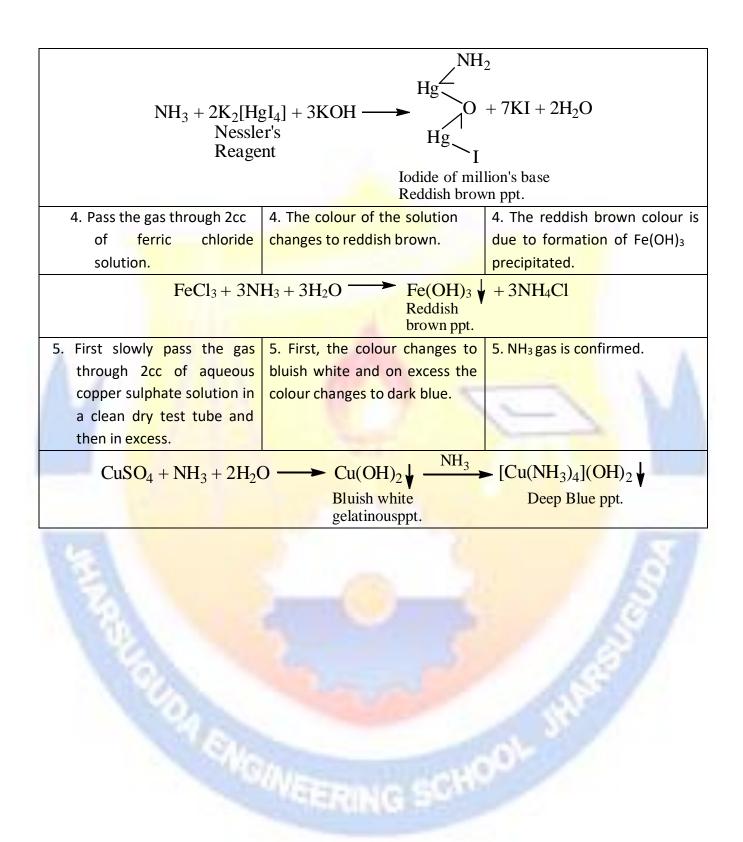
Chemical reaction:

Procedure:

- Take a mixture of ammonium chloride and quick lime in 1:3 ratio in a mortar and then mix thoroughly and take this mixture in a round bottom flask.
- 2. Fit the cork along with the delivery tube into the mouth of the round bottom flask.

- 3. Clamp the RB flask in the clamp stand and heat it continuously.
- 4. Collect the gas by downward displacement of air.
- 5. Study its physical & chemical properties.

* Better results can be obtained by passing the gas through a CaO tube to dry ammonia.


Observation:

Physical properties:

EXPERIMENT	OBSERVATION	INFERENCE
1. Observ <mark>e the colour of</mark>	1. Colourless	 NH₃ is a Colourless gas
the ga <mark>s</mark> .		
2. Observe the odour of	2. Pungent suffocating odour	2. NH ₃ is a pungent suffocating
the gas.		gas.
3. Introdu <mark>ce a burning</mark>	3. The match stick will	3. NH₃ gas neither combustible
matchstick into a test	extinguish.	nor supporter of combustion.
tube f <mark>ull of NH₃gas.</mark>		
4. Invert the gas jar	4. The level of water is found to	4. NH ₃ gas is highly soluble in
containing NH₃ gas into	be increased.	water.
a tro <mark>ugh of water.</mark>		

Chemical properties:

EXPERIMENT	OBSERVATION	INFERENCE
1. Show a piece of moist	1. The red litmus change to	 NH₃ gas is basic in nature.
red litmus paper to the	blue.	
gas.		2011
2. Show a glass rod dipped	2. White dense fumes are	2. White dense fumes are
in concentrated HCl to	observed.	observed due to formation of
the gas.		NH₄CI.
N	$H_3 + HCl \longrightarrow NH_4Cl$	1
	White fume	28
3. Pass the gas through	3. The colour of the solution	3. The reddish brown colour is
about 2cc of Nessler's	changes to reddish brown.	due to a complex.
reagent in a clean dry	HERING PR	
test tube.		

EXPERIMENT No.-3: Preparation and Crystallization of Copper sulphate from Copper carbonate

Aim of the Experiment:

To prepare the crystals of Copper sulphate from Copper carbonate.

Apparatus Required:

- 1. Beaker
- 2. Glass rod
- 3. Tripod stand
- 4. Wire gauze
- 5. Bunsen Burner
- 6. Funnel
- 7. Filter Stand
- 8. Filter paper
- 9. Porcelain Basin

Chemicals Required:

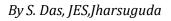
- 1. Copper Carbonate
- 2. Dilute Sulphuric acid

Theory:

Copper carbonate when react with dilute sulphuric acid is converted into copper sulphate. The resulting copper sulphate solution is evaporated till the crystallization point is reached. On cooling the resulting solution, the crystals of copper sulphate separates out.

Chemical Equation:

$$CuCO_3 + H_2SO_4 \longrightarrow CuSO_4 + H_2O + CO_2$$


Procedure:

- 1. Take about 50-60ml of dil. H_2SO_4 solution in a beaker and add the supplied CuCO₃ salt pinch by pinch with stirring till a small quantity of CuCO₃ solid is left behind.
- 2. Heat the resulting solution to boil in the beaker for 2-3 minutes while stirring by glass rod to drive out CO₂ gas liberated in the process.
- 3. Then cool the solution slightly and filter into a china dish.
- 4. Then add a few drops of dil. H_2SO_4 to the filtrate to check the hydrolysis of salt.

- 5. Concentrate the filtrate in the basin by evaporation through heating with constant stirring till a drop of solution forms a crystal on the glass rod when it was cooled by blowing air from the mouth.
- 6. Remove the china dish from the flame and cool inside the water bath till the blue crystals of CuSO₄ separate out.
- 7. Then separate the mother liquor from the crystals and dry by gently pressing between the pads of filter papers.

Result:

Colour of crystal: Blue Shape of the crystal- Triclinic

EXPERIMENT No.-4(i): Volumetric analysis(TITRATION)-Acidimetry-Determination of the strength of an acid solution by using a standard alkali solution.

Aim of the experiment:

To find out the strength of the supplied acid solution by using a standard alkali solution in the laboratory.

Apparatus Required:

- 1. Burette-50ml
- 2. Pipette-10ml
- 3. Conical Flask
- 4. Beaker
- 5. Wash bottle
- 6. Burette stand with clamp
- 7. Dropper

Chemicals Required:

- 1. Unknown strength of acid solution
- 2. A standard alkali solution
- 3. Phenolphthalein indicator solution

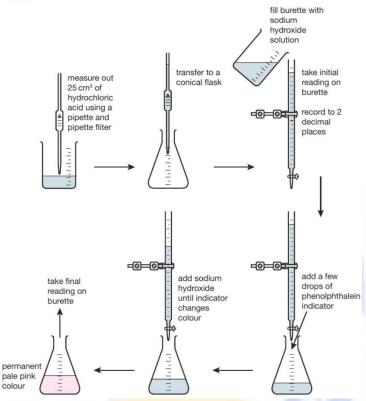
Theory:

The strength of an unknown acid or basic solution can be calculated by using the Normality Equation:

 $N_1.V_1 = N_2.V_2$

Where; N₁ = Strength of acid(unknown)

V₁ = Volume of used acid(pipette reading)


N₂ = Strength of standard alkali(known)

V₂ = Volume of the alkali(Burette reading)

Procedure:

- 1. Wash the burette, pipette and conical flask with tap water and then rinse with distilled water.
- 2. Then rinse the burette thrice with a few ml. of the given base solution and reject the washings. Then fill the burette with the given alkali solution to a convenient level without air bubbles and clamp to the burette stand in a vertical position.
- 3. Next, rinse the pipette with the supplied acid solution thrice and the washings are reacted.

- 4. Then, pipette 10ml of the supplied acid into the conical flask. After transferring the alkali solution, touch the tip of the pipette to the inner side of the conical flask thrice. Wash the sides of the conical flask with a little distilled water.
- 5. Now, add one drop of phenolphthalein indicator to the solution. The solution remains colourless in the flask.
- Then keep the conical flask under the burette.
- 7. Note the initial burette reading avoiding parallax error.
- 8. Now, run down the alkali solution from the burette slowly into the conical flask and shake the flask well. Continue the slow addition of the acid solution till the solution in the conical flask turns pink. Now, stop the addition of alkali and note the final burette reading.
- 9. Note down the difference between final burette reading and initial burette reading. This gives the volume of alkali consumed.
- 10. Repeat the titration process till three concordant readings are obtained.

Tabulation:

No. of	Volume of acid	Burette Reading		Difference	Volumes of
observ -ations	(V ₁)(in mi)	I.B.R	F.B. R	— F.B.R-I.B.R	alkaliconsumed (V ₂) (In ml)
1					
2					
3					
4					

By S. Das, JES,Jharsuguda

Calculation:

We know that, from Normality equation;

 $N_1.V_1 = N_2.V_2$

Where;

N₁ = Strength of acid(unknown)

 V_1 = Volume of used acid(pipette reading)-Avg. value from calculation table

N₂ = Strength of standard alkali(given)

V₂ = Volume of the alkali(Burette reading) = 10ml

$$N1 = \frac{N2. V2}{N1}$$

Conclusion:

From the above experiment, we conclude that; the normality of given acid is _

EXPERIMENT No.-4(ii): Volumetric analysis(TITRATION)-Alkalimetry-Determination of the strength of an alkali solution by using a standard acid solution.

Aim of the experiment:

To find out the strength of the supplied alkali solution by using a standard acid solution in the laboratory.

Apparatus Required:

- 1. Burette-50ml
- 2. Pipette-10ml
- 3. Conical Flask
- 4. Beaker
- 5. Wash bottle
- 6. Burette stand with clamp
- 7. Dropper

Chemicals Required:

- 1. Unknown strength of alkali solution
- 2. A standard acid solution
- 3. Phenolphthalein indicator solution

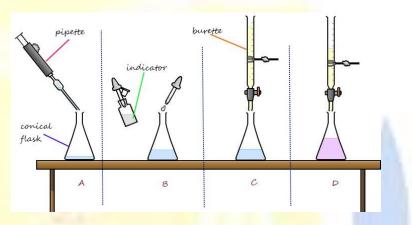
Theory:

The strength of an unknown acid or basic solution can be calculated by using the Normality Equation:

SAVEERIN

 $N_1.V_1 = N_2.V_2$

Where; N₁ = Strength of standard acid(known)


V₁ = Volume of used acid(Burette reading)

N₂ = Strength of base(unknown)

V₂ = Volume of the alkali(pipette reading)

Procedure:

- 1. Wash the burette, pipette and conical flask with tap water and then rinse with distilled water.
- 2. Then rinse the burette thrice with a few ml. of the given acid solution and reject the washings. Then fill the burette with the given acid solution to a convenient level without air bubbles and clamp to the burette stand in a vertical position.
- Next, rinse the pipette with the supplied alkali/base solution thrice and the washings are reacted.
- 4. Then, pipette 10ml of the supplied alkali into the conical flask. After transferring the alkali solution, touch the tip of the pipette to the inner side of the conical flask thrice. Wash the sides of the conical flask with a little distilled water.

- 5. Now, add one drop of phenolphthalein indicator to the solution. The solution turns pink in the flask.
- 6. Then keep the conical flask under the burette.
- 7. Note the initial burette reading avoiding parallax error.
- 8. Now, run down the acid from the burette slowly into the conical flask and shake the flask
- well. Continue the slow addition of the acid solution till the solution in the conical flask becomes colourless. Now, stop the addition of acid and note the final burette reading.
- Note down the difference between final burette reading and initial burette reading. This gives the volume of acid consumed.
- 10. Repeat the titration process till three concordant readings are obtained.

Tabulation:

No. of	Volume of alkali	Burette Reading		Difference	Volumes of acid
observ -ations	(V ₂)(In ml)	I.B.R	F.B.R	F.B.R-I.B.R	consumed (V ₁) (In ml)
1					
2					
3					
4					

Calculation:

We know that, from Normality equation;

 $N_1.V_1 = N_2.V_2$

Where;

N₁ = Strength of standard acid(known)

 $V_1 = Volume of used acid(Burette reading)-Avg. value from calculation table$

N₂ = Strength of base(unknown)

V₂ = Volume of the alkali(pipette reading) = 10ml

IGINEERI

Conclusion:

From the above experiment, we conclude that; the strength of given alkali is

EXPERIMENT No.-5: (SALT ANALYSIS)-Test for Known Acid radicals in the given salts

AIM OF THE EXPERIMENT:

To detect known acid radicals in a given salt.

WORKING PROCEDURE FOR INDIVIDUAL ACID RADICALS: a) <u>TEST FOR CARBONATE(CO₃²⁻):</u>

EXPERIMENT	OBSERVATION	INFEERENCE
) Test with dilute HCL: Take 1 ml	Effervescence takes	CO ₂ gas comes out of
of dilute HCl in a clean dry test	place with evolution of	carbonate salt.
tube and he <mark>at it upto boiling.</mark>	colourless and	
Then remove it from boiling and	odourless gas.	
add a pinch of <mark>salt to</mark> it.		
Na ₂ CO ₃ +	- 2HCl - 2NaCl + H	$_{2}O + CO_{2}$
i) Pass the gas through limewater	Limewater turns milky.	CO_3^{2-} is confirmed.
in small quantity and then in	Milkiness disappears	1-1
excess.	with excess gas.	
Ca(OH	$)_2 + CO_2 \longrightarrow CaCO_3$	$+ H_2O$
CaCO ₃	$+ H_2O + CO_2 \longrightarrow Ca(1)$	<i>3, 1</i>
	Sol	uble

b) TEST FOR SULPHIDE(S²⁻):

EXPERIMENT	OBSERVATION	INFEERENCE		
i) Test with dilute HCL: Take 1 ml	Effervescence takes place	H ₂ S gas comes out of		
of dilute HCl in a clean dry test	with evolution of	sulphide salt.		
tube and heat it upto boiling.	colourless gas with			
Then remove it from boiling and	rotten egg sm <mark>ell.</mark>			
add a pinch of salt to it.				
Na ₂	$Na_2S + 2HCl \longrightarrow 2NaCl + H_2S$			
ii) Pass the gas through the filter	The filter paper turns	Lead sulphide is formed.		
paper dipped in lead acetate	black	S ²⁻ is confirmed.		
solution.				
$(CH_3COO)_2Pb + H_2S \longrightarrow 2CH_3COOH + PbS \forall$				
		Black ppt.		

c) <u>TEST FOR CHLORIDE(Cl⁻):</u>

OBSERVATION	INFEERENCE
Effervescence takes place with the evolution of a colourless fuming gas with pungent smell	HCl gas comes out of chloride salt.
$+ H_2SO_4 \longrightarrow Na_2SO_4 + H_2SO_4 \longrightarrow BaSO_4 + 2$	
Dense white fumes are evolved	
$OH + HC1 \longrightarrow NH_4C1 + Idense white fumes$	H ₂ O te
A curdy white precipitate is formed	The precipitate is due to formation of AgCI.
+ $AgNO_3 \longrightarrow AgCl \neq Na$	aNO ₃
The precipitate dissolves and reappears on addition of dilute HCI	The precipitate dissolves in dil. NH4OH due to formation of complex.
OH → [Ag(NH ₃) ₂]Cl + Diamino silver chloride Soluble in water + HNO ₃ → AgCl + NH	1004
	Effervescence takes place with the evolution of a colourless fuming gas with pungent smell + $H_2SO_4 \longrightarrow Na_2SO_4 + H_2SO_4 \longrightarrow BaSO_4 + 2$ Dense white fumes are evolved DH + HCl $\longrightarrow NH_4Cl + H_2SO_4$ DH + HCl $\longrightarrow NH_4Cl + H_2SO_4$ A curdy white precipitate is formed A curdy white precipitate is formed + $AgNO_3 \longrightarrow AgCl \neq + NT_4SO_4$ The precipitate dissolves and reappears on addition of dilute HCl DH $\longrightarrow [Ag(NH_3)_2]Cl + Diamino silverchloride$

d) <u>TEST FOR NITRATE(NO₃⁻):</u>

EXPERIMENT	OBSERVATION	INFEERENCE	
i) Test with conc. H2SO4: Take a	Effervescence takes place	Vapours of HNO ₃ comes	
pinch of given salt in a clean dry	with the evolution of	out from a nitrate salt.	
test tube and add 1 to 2 ml of	light brown fumes		
conc. H ₂ SO ₄ to it and warm gently			
2NaNO ₃ +	$H_2SO_4 \longrightarrow Na_2SO_4 + 2H$	NO ₃	
ii) Test with Cu-turnings: To the	Evolution of copius	NO ₂ gas is formed from a	
above mixture add a few copper	brown fumes	nitrate salt.	
turnings and warm gently.			
	$O_3 \longrightarrow Cu(NO_3)_2 + 2H_2C$		
iii) Brown Ring Test: Take 1 to 2 cc	A brown ring is formed	Brown ring is formed due	
of salt solution in a cleandry test	at the junction of 2	to formation of nitroso	
tube and add equal volume of	liquid layers.	ferrous sulphate.	
conc. H_2SO_4 to it. Cool it under			
tap water and add freshly			
prepared FeSO ₄ solution through			
the side of the tube slowly.			
$KNO_3 + H_2SO_4$	\longrightarrow KHSO ₄ + HNO ₃		
$6FeSO_4 + 2HNO_3 + 3H_2SO_4 \longrightarrow 3Fe_2(SO_4)_3 + 2NO + 4H_2O_3$			
FeSO ₄ + NO	$FeSO_4 + NO \longrightarrow [Fe(NO)]SO_4$		
Nitroso ferrous sulphate			
	Brown ring	1111	

e) <u>TEST FOR SULPHATE(SO4²⁻):</u>

EXPERIMENT	OBSERVATION	INFEERENCE	
Take a little of the given salt in a	A white precipitate is	Barium sulphate is formed	
clean and dry test tube and add a	obtained which is	which is insoluble in conc.	
few cc of distilled water and shake	insoluble in conc. HCl	HCI	
well. Acidify it with dil. HCl. Then	even on boiling		
add barium chloride solution to it			
NasSC	$Na_2SO_4 + BaCl_2 \longrightarrow BaSO_4 \neq 2NaCl$		
	white ppt.		

EXPERIMENT No.-6: (SALT ANALYSIS)-Test for Known Basic radicals in the given salts

AIM OF THE EXPERIMENT:

To detect known basic radicals in a given salt.

WORKING PROCEDURE FOR INDIVIDUAL ACID RADICALS:

a) TEST FOR AI⁺³:

 i) Take about 2ml of the supplied salt solution. Add solid NH₄Cl till saturation. Then add dil. NH₄OH solution first drop wise & then in excess till alkaline. AlCl₃ + 3NH₄OH → Al(OH)₃ ↓ + 3NH₄Cl Gelatinous white ppt. ii) Take about 2ml of the supplied salt solution. Add dil. NaOH drop by drop to it. Gelatinous white is soluble in excess NaOH 	ENCE
saturation. Then add dil. NH₄OH solution first drop wise & then in excess till alkaline. Image: Constraint of the supple solution first drop wise & then in excess till alkaline. AlCl3 + 3NH₄OH Al(OH)3 + 3NH₄Cl Gelatinous white ppt. ii) Take about 2ml of the supplied salt solution. Add dil. NaOH drop by drop to it. Gelatinous white ppt.	nt.
solution first drop wise & then in excess till alkaline. Al(OH)3 ↓ + 3NH4CI Gelatinous white ppt. AlCl3 + 3NH4OH → Al(OH)3 ↓ + 3NH4CI Gelatinous white ppt. Al(OH)3 ↓ + 3NH4CI Gelatinous white ppt. ii) Take about 2ml of the supplied salt solution. Add dil. NaOH drop by drop to it. Gelatinous white precipitate is first obtained which is soluble in excess	
excess till alkaline. AICl ₃ + 3NH ₄ OH → Al(OH) ₃ + 3NH ₄ Cl Gelatinous white ppt. ii) Take about 2ml of the supplied salt solution. Add dil. NaOH drop by drop to it. Al(OH) ₃ + 3NH ₄ Cl Gelatinous white precipitate is first obtained which is soluble in excess	
AlCl ₃ + 3NH ₄ OH Al(OH) ₃ ↓ + 3NH ₄ Cl Gelatinous white ppt. ii) Take about 2ml of the supplied salt solution. Add dil. NaOH drop by drop to it. Gelatinous white ppt. Al ⁺³ is confirmed which is soluble in excess	
Gelatinous white ppt. ii) Take about 2ml of the supplied salt solution. Add dil. NaOH drop by drop to it. Gelatinous white ppt. Al ⁺³ is confirmed precipitate is first obtained which is soluble in excess	
salt solution. Add dil. NaOH drop by drop to it. precipitate is first obtained which is soluble in excess	
by drop to it. which is soluble in excess	
NaOH	
$AlCl_3 + 3NaOH \longrightarrow Al(OH)_3 + 3NaCl$	
With excess NaOH solution:	
$Al(OH)_3 + NaOH \longrightarrow NaAlO_2 + 2H_2O$ Sodium meta-aluminate	

b) TEST FOR Zn⁺²:

EXPERIMENT	OBSERVATION	INFEERENCE
i) Add solid NH ₄ Cl followed by dil.	White precipitate is	Zn ⁺² may be present
NH ₄ OH to the salt solution.	obtain <mark>ed.</mark>	196
Warm it & pass H ₂ S gas through		
it.		
ZnC	$\text{Cl}_2 + \text{H}_2\text{S} \longrightarrow \text{ZnS} \checkmark + 2\text{H}_2\text{S}$	łCl
ii) Add dilute NaOH to the solution	white precipitate is first	Zn ⁺² is confirmed
drop wise & then in excess.	obtained which is soluble	
	in excess NaOH	
$ZnCl_2 + 2NaOH \longrightarrow Zn(OH)_2 \checkmark + 2NaCl$		
$Zn(OH)_2 + 2NaOH \longrightarrow Na_2ZnO_2 + 2H_2O$		
	Sodium Z	incate
	Water sol	uble

c) TEST FOR Ca⁺²:

EXPERIMENT	OBSERVATION	INFEERENCE
i) Take about 2ml of the supplied salt solution. Add solid NH ₄ Cl till saturation. Then add dilute NaOH till alkaline. Add saturated solution of ammonium carbonate.	White precipitate is obtained.	Ca ⁺² may be present
CaCl ₂ + (N	H) ₄ CO ₃ → CaCO ₃ ♦	+ 2NH ₄ Cl
ii) The white ppt. obtained is dissolved in dil. CH₃COOH. Add ammonium oxalate solution to it followed by dil. NH₄OH	White precipitate of calcium oxalate is obtained.	Ca ⁺² is confirmed
5 5	$\begin{array}{ccc} \text{COOH} &\longrightarrow & (\text{CH}_3\text{COO})_2\text{Ca}\\ \text{NH}_4)_2\text{C}_2\text{O}_4 & \longrightarrow & \text{CaC}_2\text{O}_4 \end{array}$	

d) <u>TEST F<mark>OR Na</mark>*:</u>

EXPERIMENT	OBSERVATION	INFEERENCE
Add 1ml of potassium pyroantimonate solution to 1ml of the salt solution	White precipitate of sodium pyroantimonate is obtained.	Na ⁺ is confirmed
$2\text{NaCl} + \text{K}_2\text{H}_2\text{Sb}_2\text{O}_7 \longrightarrow \text{Na}_2\text{H}_2\text{Sb}_2\text{O}_7 \checkmark + 2\text{KCl}$		

e) TEST FOR K⁺:

EXPERIMENT	OBSER	VATION	INFEERENCE
Add a few drops of cobalt nitrate	Yellow precip	itate of	K ⁺ is confirmed
solution followed by sodium nitrite	potassium cobalt	i nitrite if	- N
and dilute CH ₃ COOH to 1 ml of salt	formed		100
solution. Allow it to stand for 5 min.			
	Variation Va		
		1000	

$$KCl + NaNO_{2} \longrightarrow KNO_{2} + NaCl$$

$$Co(NO_{3})_{2} + 2NaNO_{2} \longrightarrow Co(NO_{2})_{2} + 2NaNO_{3}$$

$$2CH_{3}COOH + Co(NO_{2})_{2} + 2KNO_{2} \longrightarrow 2CH_{3}COOK + H_{2}O + NO + Co(NO_{2})_{3}$$

$$3KNO_{2} + Co(NO_{2})_{3} \longrightarrow K_{3}[Co(NO_{2})_{6}] \checkmark$$
Potassium cobalti nitrate yellow ppt

f) <u>TEST FOR NH₄⁺:</u>

EXPERIMENT	OBSERVATION	INFEERE NCE
a) Add dilute NaOH to 1cc of	Brown precipitate is	NH₄ ⁺ is confirmed
original salt solution and boil it	obtained.	
A		
NH ₄ Cl +	NaOH → NH ₃ + NaCl	+ H ₂ O
b) Add Nessler's reagent to 1cc	Reddish brown	NH ₄ ⁺ is confirmed
original salt solution	precipitate is obtained.	
	NH ₂	
	Hg	
$NH_4Cl + K_2[HgI_4] + 4K_4$	$OH \rightarrow 20 + KI$	+ KCl $+$ H ₂ O
Nessler's	Ησ	
Reagent	I	
	Iodide of million's Reddish brown ppt	

g) <u>TEST FOR Mg⁺²:</u>

EXPERIMENT		OBSERVATION	INFEERENCE
a) To 1 ml of salt solution add solid NH4Cl till saturation & dil. NH4OH till alkaline. Then add disodium hydrogen phosphate solution to it.	White obtained	precipitate is	Mg ⁺² is confirmed.
$MgSO_4 + NH_4OH + N$	Na ₂ HPO ₄	\longrightarrow Mg(NH ₄)F	$PO_4 + H_2O + Na_2SO_4$
 b) To 1 ml of salt solution, add dil. HCl with a few drops of magneson reagent followed by addition of excess dil. NaOH 	A blue obtained	· ·	Mg ⁺² is confirmed.

EXPERIMENT No.-7: (SALT ANALYSIS)-Test for unknown Acid radicals in the given salts

Aim of the Experiment:

To test the unknown acid radical in the given salt.

Dry Test for Acid Radicals:

1. Test for Gr-I acid Radicals (CO₃²⁻⁻ and S²⁻⁻):

EXPERIMENT	OBSERVATION	INFEERENCE
Take a pinch of salt in a test tube with 2cc of dilute HCl and warm it.	1. Effervescence takes place with evolution of colourless and odourless gas or colourless gas with rotten egg smell.	1. CO ₃ ² or S ² may be present. Confirmatory tests are to be performed.
	2. No change is observed	2. Next test is to be performed.

2. Test for Gr-II acid Radicals (Cl⁻⁻ and NO₃⁻⁻):

EXPERIMENT	OBSERVATION	INFEERENCE
To a pinch of salt, add 3 to 4 drops of conc. H ₂ SO ₄ in a clean and dry test tube.	 A colourless fuming gas with pungent smell is evolved. Brown fumes with pungent 	 Cl⁻ may be present. Confirmatory test for chloride is to be performed NO₃⁻ may be present.
Color and	smell are evolved. 3. No change is observed	Confirmatory test for chloride is to be performed 3. Next test is to be performed.

3. Test for Gr-III acid Radicals(SO₄²⁻⁻):

EXPERIMENT	OBSERVATION	INFEERENCE
Take a little of the given salt in	A white precipitate is	Barium sulphate is formed
a clean and dry test tube and	obtained which is insoluble in	which is insoluble in conc. HCl.
add a few cc of distilled water and shake well. Acidify it with	conc. HCl even on boiling	Sulphate is confirmed.
dil. HCl. Then add barium		
chloride solution to it.		

Wet test for acid radicals:

* (Write the confirmatory tests of only the radicals of Gr. I or II which showed positive observation in dry test)

1. Test for Carbonate

EXPERIMENT	OBSERVATION	INFEERENCE
Pass the gas through limewater in small quantity and then in excess.		CO ₃ ²⁻ is confirmed.
	$H_{12} + CO_2 \longrightarrow CaCO_3 \neq H_{20}$ $H_{20} + H_{20} + CO_2 \longrightarrow Ca(HCO_3)$ Soluble	

2. Test for Sulphide

EXPERIMENT	OBSERVATION	INFEERENCE			
Pass the gas through the filter paper dipped in lead acetate solution.	The filter paper turns black	Lead sulphide is formed. S ²⁻ is confirmed.			
$(CH_3COO)_2Pb + H_2S \longrightarrow 2CH_3COOH + PbS \bigvee$ Black ppt.					

3. Test for Chloride

EXPERIMENT	OBSERVATION	INFEERENCE					
i) Show a glass rod dipped in conc. NH4OH to the mouth of the test tube containing salt and conc. H2SO4	Dense white fumes are evolved	Volatile NH₄Cl is formed.					
$NH_4OH + HCl \longrightarrow NH_4Cl + H_2O$ dense white fumes							
ii) Action of AgNO ₃ : Take 1 to 2ml of salt solution with distilled water in a clean test tube & acidify it with dilute HNO ₃ acid & add a few ml of AgNO ₃ solution A curdy white precipitate is formed A curdy white precipitate is formed formation of AgCl. The precipitate is due to formation of AgCl.							
NaC	Cl + AgNO ₃ → AgCl ♦ + NaN	NO ₃					
iii) To the above solution add NH₄OH solution.	The precipitate dissolves and reappears on addition of dilute HCI	The precipitate dissolves in dil. NH4OH due to formation of complex. Cl ⁻ is confirmed.					
$AgCl + 2NH_4OH \longrightarrow [Ag(NH_3)_2]Cl + 2H_2O$ Diamino silver chloride Soluble in water							
$[Ag(NH_3)_2]Cl + HNO_3 \longrightarrow AgCl \neq NH_4NO_3 + H_2O$ ppt. reappears							

4. Test for Nitrate

EXPERIMENT	OBSERVATION	INFEERENCE
i) Test with Cu-turnings: To the above mixture add a few copper turnings and warm gently.	Evolution of copius brown fumes	NO ₂ gas is formed from a nitrate salt.

EER(

SCHOO

$$\begin{array}{c} Cu + 4HNO_{3} \longrightarrow Cu(NO_{3})_{2} + 2H_{2}O + 2NO_{2} \bigstar$$

$$\begin{array}{c} \textbf{ii) Brown Ring Test: Take 1 to} \\ 2 cc of salt solution in a clean dry test tube and add equal volume of conc. H_{2}SO_{4} to it. Cool it under tap water and add freshly prepared FeSO_{4} solution through the side of the tube slowly. \end{array}$$

$$\begin{array}{c} \textbf{KNO}_{3} + H_{2}SO_{4} \longrightarrow \textbf{KHSO}_{4} + HNO_{3} \\ 6FeSO_{4} + 2HNO_{3} + 3H_{2}SO_{4} \longrightarrow 3Fe_{2}(SO_{4})_{3} + 2NO + 4H_{2}O \\ FeSO_{4} + NO \longrightarrow [Fe(NO)]SO_{4} \\ Nitroso f errous sulphate \\ Brown ring \end{array}$$

Conclusion:

The acid radical detected from the above experiment is found to be _

KSINEERIN

EXPERIMENT No.-8: SALT ANALYSIS-Test for unknown Basic radical in a given salt.

Aim of the Experiment:

To test the unknown basic radical in the given salt.

Dry Test for Basic Radicals:

1. Dry Test tube Heating:

EXPERIMENT	OBSERVATION	INFEERENCE
Take a pinch of salt in a clean	i) White sublimate is	i) Ammonium salt may be
and dry test tub <mark>e and heat in</mark>	formed.	present
strongly.	ii) Decripitation takes	ii) Crystalline salt
	place.	
	iii) Deflagration takes	iii) Some nitrate salt
	place.	
A	iv)The colour of the salt	iv) Zinc salt
	becomes yellow when	
	hot and white when	v) Alkali or alkaline earth metal
	cold.	salt
	v) The salt fuses(melts) on	
	heating and solidifies on	vi) Some aluminium salt
	cooling.	
	vi)The salt swells on	
	heating.	ii)Next test is to be performed.
	vii) No change observed	

2. Sodalime Test:

EXPERIMENT	OBSERVATION		INFEE	<mark>REN</mark> C	E	
Take a pinch of the salt in a	i. Ammonia gas is evolved	i. Ammo	nium	salt	may	be
mortar and add equal volume		presen	ıt.			2.1
of soda lime to it & add few	ii. No change observed	ii. Next	test	is	to	be
drops of distilled water to it.		perfor	med.		100	
Then rub it with the help of a		-				
pestle.					5	

3. Charcoal cavity test:

EXPERIMENT	OBSERVATION	INFEERENCE
Take a little of the salt in a	i. The salt decrepitates.	i. Crystalline salt
charcoal cavity and heat it in	ii. The salt deflagrates.	ii. Nitrate salt
oxidizing flame strongly.	iii. The salt fuses and is absorbed by the charcoal cavity which reappears on cooling.	

iv. Gives	white	infusible	iv. Perfor	m coba	lt nit	rate t	est
incande	escent res	idue.					
v. No cha	nge obser	ved	v. Next	test	is	to	be
			perfor	med.			

4. Cobalt nitrate test:

EXPERIMENT	OBSERVATION	INFEERENCE
In the above Charcoal cavity,	i. Blue mass	i. Aluminium salt
take a pinch of the salt and	ii. Green mass	ii. Zinc salt
add 1-2 drops of cobalt nitrate	iii. Grey mass	iii. Calcium salt
to it. Then h <mark>eat it in a</mark>	iv. No change observed	<mark>iv. Next test is </mark> to be
oxidizing flame of the bunsen		performed.
burner strongly with the help		
of a blow pipe.		

5. Flame Test:

EXPERIMENT	OBSERVA	ATION	INFEERENCE
Take a few cc o <mark>f concentrated</mark>	Colour of the flame	Colour of the	
HCl in a watch glass. Clean a	through naked eye	flame through	
piece of nichr <mark>ome wire with</mark>		double blue	
the help of sand paper. Dip		glass	
the nichrome wire in conc.	i. Persistent	Colourless 🛛	Sodium
HCI and sho <mark>w it to the</mark>	golden yellow		
oxidizing flame of burner.			
Repeat it thrice. Then first dip	ii. Violet	Red	Potassium
the nicrome wire in conc. HCl	Sec. 19		15.1
and allow it to touch the salt	The second se	-	Real of the
and show it to the outer layer	iii. Brick	1	
of the non-luminous flame.	red/orange red	Light green	Calcium
Observe the colour of the			1.6
flame through the naked eye	iv. Green flame		
and then with double blue	with blue		Copper
glass.	center		
			100

WEERING SCHO

Wet test For Basic Radicals:

Separation into groups:

Prepare a s	are a salt solution with dilute HCl and filter.									
Residue-	Filtrat	:e-1: \	Warm the filt	arm the filtrate & then pass H ₂ S gas till complete precipitation and filter						
<u>1</u>	Resid	ue-	Filtrate-2: W	/arm the filt	rate slightly. T	hen saturate it by adding solid				
Gr-I radicals	2		NH₄CI follow	ed by dilute	NH ₄ OH soluti	ion and then filter.				
	Gr-IIA		Residue-3	Filtrate-3:	Warm the filt	<mark>rate slightly & then pa</mark> ss H₂S gas till				
	and IIB	Gr-	Gr-IIIA	complete p	precipitation 8	k then filter.				
	radica	ls	radicals	Residue-		aturate the filtrate with (NH4)2CO3				
M		f	Gelatin <mark>ous</mark> white	4 Gr-IIIB	solution follo filter.	owed by solid NH ₄ Cl & NH ₄ OH and				
			ppt(Al ⁺³)	radicals	Residue-5	Filtrate-5: Use this filtrate for the				
			lf no ppt. test for	white ppt(Zn ⁺²)	Gr-IV radicals					
	ť		Filtrate-3	If no ppt. test for	white ppt (Ca ⁺²)					
				Filtrate-4	If no ppt.					
					<mark>test</mark> for					
1					Filtrate-5 individually	S				

Test for Gr-IIIA Radicals(AI⁺³):

	the second se	
EXPERIMENT	OBSERVATION	INFEERENCE
	Gelatinous white precipitate is first obtained which is soluble in excess NaOH	Al ⁺³ is confirmed

Test for Gr-IIIB Radicals(Zn⁺²):

EXPERIMENT	OBSERVATION	INFEERENCE
	white precipitate is first obtained which is soluble in excess NaOH	Zn ⁺² is confirmed

Test for Gr-IV Radicals(Ca⁺²):

EXPERIMENT	OBSERVATION	INFEERENCE
The white ppt. obtained is dissolved in dil. CH ₃ COOH. Add ammonium oxalate solution to it followed by dil. NH ₄ OH	White precipitate of calcium oxalate is obtained.	Ca ⁺² is confirmed

Test for Gr-V Radicals(Na⁺, K⁺, Mg⁺, NH₄⁺):

EXPERIMENT	OBSERVATION	
Test for Na ⁺ :		
Add 1ml of potassium	White precipitate of sodium	Na ⁺ is confirmed
pyroantimonate solution to	pyroantimonate is obtained.	
1ml of the salt solution		
Test for K ⁺ :		11.50
Add a few drops of cobalt	Yellow precipitate of	K⁺ is confirmed
nitrate solution followed by	potassium cobalti nitrite if	22
sodium nitrite and dilute	formed	
CH ₃ COOH to 1 ml of salt	-	-0° - 4
solution. Allow it to stand	700	
for 5 min.	VERSING SP	
Test for NH₄⁺:	and the state of the second seco	
i) Add dilute NaOH to 1cc of	Brown precipitate is obtained.	NH ₄ ⁺ is confirmed
original salt solution and		
boil it		

ii) Add Nessler's reagent to	Reddish Brown precipitate is	NH4 ⁺ is confirmed
1cc original salt solution	obtained.	
Test for Mg ⁺² :		
i)To 1 ml of salt solution add		
solid NH ₄ Cl till saturation &	White precipit <mark>ate</mark> is obtained.	Mat ² is confirmed
dil. NH₄OH till alkaline. Then		Mg ⁺² is confirmed.
add disodium hydrogen		
phosphate solution to it.		
ii)To 1 ml of salt solution,		
add dil. HCl w <mark>ith a few drops</mark>	A blue precipitate is obtained.	Mg ⁺² is confirmed.
of magne <mark>son reagent</mark>		
followed by a <mark>ddition o</mark> f		
excess dil. NaOH		

Conclusion:

The basic radical detected from the above experiment is found to be _

EXPERIMENT No.-9: SALT ANALYSIS-Test for unknown Acid and Basic radicals in a given salt.

Aim Of The Experiment: To identify the acid and basic radicals in a given unknown salt.

Preliminary Test:

Salt No.-Colour- white/yellow/blue/grey/colourless Structure- Crystalline/amorphous Odour- Ammoniacal/rotten egg/odourless Solubility- In Cold H₂O/Hot H₂O In cold dil HCl/hot dil HCl

Litmus Test:

EXPERIMENT		OB	SERVATION	N	INFEERENCE
Prepare a salt solution in	a)	Blue	litmus	paper	a) Salt is acidic in nature
water. Then add a drop of		change	d to red		
solution to blue litmus paper	b)	Red litr	mus paper	changed	
		to blue			b) Salt is basic in nature
and red litm <mark>us paper.</mark>	c)	No cha	nge observ	ed	c) Salt is neutral

Dry Test for Basic Radicals:

1. Dry Test tube Heating:

EXPERIMENT	OBSERVATION INFEERENCE
Take a pinch of salt in a clean and dry test tube and heat in strongly.	i) Whitesublimateisi) Ammoniumsaltmaybeformed.presentii) Decripitationtakesii) Crystalline saltplace.iii) Deflagrationtakesiii) Some nitrate salt
en en	 place. iv) The colour of the salt becomes yellow when hot and white when cold. v) The salt fuses(melts) on besting and colidifies on salt
	 heating and solidifies on cooling. vi) The salt swells on heating. vii) No change observed performed.

2. Sodalime Test:

EXPERIMENT	OBSERVATION	INFEERENCE
Take a pinch of the salt in a mortar and add equal volume	i. Ammonia gas is evolved	i. Ammonium salt may be present.
of soda lime to it & add few drops of distilled water to it. Then rub it with the help of a pestle.	ii. No change observed	ii. Next test is to be performed.

3. Charcoal cavity test:

EXPERIMENT	OBSERVATION	INFEERENCE
Take a little of the salt in a charcoal cavity and heat it in oxidizing flame strongly.	 i. The salt decrepitates. ii. The salt deflagrates. iii. The salt fuses and is absorbed by the charcoal cavity which reappears on cooling. iv. Gives white infusible 	i. Crystalline salt ii. Nitrate salt iii. Alkali or alkaline earth metal salts iv. Perform cobalt nitrate test
	incandescent residue. v. No change observed	v. Next test is to be performed.

4. Cobalt nitrate test:

EXPERIMENT	OBSERVATION	INFEERENCE
In the above Charcoal cavity, take a pinch of the salt and add 1-2 drops of cobalt nitrate to it. Then heat it in a oxidizing flame of the bunsen burner strongly with the help of a blow pipe.	i. Blue mass ii. Green mass iii. Grey mass iv. No change observed	i. Aluminium salt ii. Zinc salt iii. Calcium salt iv. Next test is to be performed.

5. Flame Test:

EXPERIMENT	OBSERV/	ATION	INFEERENCE
Take a few cc of concentrated	Colour of the flame	Colour of the	
HCl in a watch glass. Clean a	through naked eye	flame through	
piece of nichrome wire with		double blue	
the help of sand paper. Dip		glass	
the nichrome wire in conc.			
HCI and show it to the	i. Persistent	Colourless	Sodium
oxidizing flame of burner.	golden yellow		
Repeat it thric <mark>e. Then first dip</mark>			
the nicrome w <mark>ire in conc. HCl</mark>	ii. Violet		
and allow it to touch the salt		Red	Potassium
and show it to the outer layer			
of the non-lu <mark>minous flame.</mark>			
Observe the colour of the	iii. Brick	Light green	Calcium
flame through the naked eye	red/orange red		Calcian
and then w <mark>ith double blue</mark>			
glass.	iv. Green flame		
	with blue		Copper
	center		

Dry Test for Acid Radicals:

1. Test for Gr-I acid Radicals (CO₃²⁻⁻ and S²⁻⁻):

EXPERIMENT	OBSERVATION INFEERENCE			
Take a pinch of salt in a test tube with 2cc of dilute HCl and warm it.	3. Effervescence takes place with evolution of colourless and odourless gas or colourless gas with rotten egg smell.3. CO_3^{2-} or S^{2-} may be present. Confirmatory tests are to be 			
	4. No change is observed 9. Next test is to be performed.			

EXPERIMENT	OBSERVATION	INFEERENCE		
To a pinch of salt, add 3 to 4 drops of conc. H_2SO_4 in a clean and dry test tube.	 4. A colourless fuming gas with pungent smell is evolved. 5. Brown fumes with pungent smell are evolved. 	 4. Cl⁻ may be present. Confirmatory test for chloride is to be performed 5. NO₃⁻ may be present. Confirmatory test for chloride is to be performed 		
	6. No change is observed	6. Next test is to be performed.		

4. Test for Gr-II acid Radicals (Cl⁻⁻ and NO₃⁻⁻):

5. Test for Gr-III acid Radicals(SO₄²⁻⁻):

EXPERIMENT	OBSERVATION	INFEERENCE
Take a little of the given salt in	A white precipitate is	Barium sulphate is formed
a clean and dry test tube and	obtained which is insoluble in	which is insoluble in conc. HCl.
add a few cc of distilled water and shake well. Acidify it with	conc. HCl even on boiling	Sulphate is confirmed.
dil. HCI. The <mark>n add barium</mark>		
chloride solution to it.		

Wet test for acid radicals:

5. Test for Carbonate

EXPERIMENT	OBSERVATION	INFEERENCE
Pass the gas through limewater in small quantity and then in excess.	Limewater turns milky. Milkiness disappears with excess gas.	CO ₃ ²⁻ is confirmed.

6. Test for Sulphide

EXPERIMENT	OBSERVATION	INFEERENCE
Pass the gas through the filter paper dipped in lead acetate solution.		Lead sulphide is formed. S ²⁻ is confirmed.

7. Test for Chloride

EXPERIMENT	OBSERVATION	INFEERENCE
i) Show a glass rod dipped in conc. NH4OH to the mouth of the test tube containing salt and conc. H2SO4	Dense white fumes are evolved	Volatile NH₄Cl is formed.
iv) Action of AgNO ₃ : Take 1 to 2ml of salt solution with distilled water in a clean test tube & acidify it with dilute HNO ₃ acid & add a few ml of AgNO ₃ solution	A curdy white precipitate is formed	The precipitate is due to formation of AgCl.
 V) To the above solution add NH₄OH solution. 	The precipitate dissolves and reappears on addition of dilute HCI	The precipitate dissolves in dil. NH4OH due to formation of complex. Cl ⁻ is confirmed.

8. Test for Nitrate

EXPERIMENT	OBSERVATION	INFEERENCE
i) Test with Cu-turnings: To	Evolution of copius brown	NO₂ gas is formed from a
the above mixture add a few	fumes	nitrate salt.
copper turnings and warm		
gently.		
ii) Brown Ring Test: Take 1 to	A brown ring is formed at the	Brown ring is formed due to
2 cc of salt solution in a clean	junction of 2 liquid layers.	formation of nitroso ferrous
dry test tube and add equal		sulphate. Nitrate is confirmed.
volume of conc. H_2SO_4 to it.		
Cool it under tap water and		
add freshly prepared FeSO ₄	2011	
solution through the side of	VEEDING SU	
the tube slowly.		

Wet test For Basic Radicals:

Separation into groups:

Prepare a s	alt solution	with dilute H0	Cl and filter.			
Residue-	Filtrate-1:	Warm the filtrate & then pass H_2S gas till complete precipitation and filter				
<u>1</u>	Residue-	Filtrate_2 \M	Filtrate 2: Warm the filtrate slightly. Then esturate it by adding calid			
Gr-I	2		Filtrate-2 : Warm the filtrate slightly. Then saturate it by adding solid NH ₄ Cl followed by dilute NH ₄ OH solution and then filter.			
radicals	=					
	Gr-IIA	<u>Residue-3</u>			rate slightly & then pass H ₂ S gas till	
	and Gr- IIB	Gr-IIIA	complete precipitation & then filter.			
	radicals	radicals	Residue-	Filtrate-4: Sa	aturate the filtrate with (NH ₄) ₂ CO ₃	
	Tadicals	Gelatinous	<u>4</u>	solution follo	owed by solid NH₄Cl & NH₄OH and	
Α.		white	Gr-IIIB	filter.		
		ppt(Al ⁺³)	radicals	Residue-5	Filtrate-5: Use this filtrate for the	
11.4			Taalcais	<u>Residue-5</u>	individual confirmatory test of Gr-	
		lf <mark>no ppt.</mark>	white	Gr-IV	V radicals.(Mg ⁺² , K ⁺ , Na ⁺ ,NH ₄ ⁺)	
		test for	ppt(Zn ⁺²)	radicals		
_		Filtrate-3	If no ppt.	white ppt		
			test for	(Ca⁺²)		
			Filtrate-4	If no ppt.	12	
1000				test for		
10.51				Filtrate-5	191	
157			_	individually		

Test for Gr-IIIA Radicals(Al⁺³):

EXPERIMENT	OBSERVATION	INFEERENCE
	Gelatinous white precipitate is first obtained which is soluble in excess NaOH	Al ⁺³ is confirmed

Test for Gr-IIIB Radicals(Zn⁺²):

EXPERIMENT	OBSERVATION	INFEERENCE
	white precipitate is first obtained which is soluble in excess NaOH	Zn ⁺² is confirmed

Test for Gr-IV Radicals(Ca⁺²):

EXPERIMENT	OBSERVATION	INFEERENCE
The white ppt. obtained is dissolved in dil. CH ₃ COOH. Add ammonium oxalate solution to it followed by dil. NH ₄ OH	White precipitate of calcium oxalate is obtained.	Ca ⁺² is confirmed

Test for Gr-V Radicals(Na⁺, K⁺, Mg⁺, NH₄⁺):

EXPERIMENT	OBSERVATION	INFEERENCE
Test for Na ⁺ :		
Add 1ml of potassium	White precipitate of sodium	Na ⁺ is confirmed
pyroantimonate solution to	pyroantimonate is obtained.	
1ml of the salt solution		1231
Test for K ⁺ :	1 million (1997)	11.5
Add a few drops of cobalt	Yellow precipitate of	K ⁺ is confirmed
nitrate solution followed by	potassium cobalti nitrite if	
sodium nitrite and dilute	formed	
CH ₃ COOH to 1 ml of salt		-01-
solution. Allow it to stand	1010-00-00-00-00-00-00-00-00-00-00-00-00	
for 5 min.	WEEDWARE SUN	
	Contraction States	
Test for NH ₄ ⁺ :		
i) Add dilute NaOH to 1cc of	Brown precipitate is obtained.	NH₄ ⁺ is confirmed
original salt solution and		
boil it		

ii) Add Nessler's reagent to Reddish Brown precipitate is NH ₄ ⁺ is confirmed	
1cc original salt solution obtained.	
Test for Mg ⁺² :	
iii) To 1 ml of salt solution	
add solid NH ₄ Cl till White precipitate is obtained. Mg ⁺² is confirmed.	
saturation & dil. NH4OH till	
alkaline. Then add disodium	
hydrogen phosphate	
solution to it.	
iv) To 1 ml of salt solution, A blue precipitate is obtained. Mg ⁺² is confirmed.	
add dil. HCl with a few drops	
of magneson reagent	
followed by addition of	10,00
excess dil. NaOH	

Conclusion:

YGAVEERING

595