LECTURE NOTE ON NUMERICAL ANALYSIS

Prepared by

SATYANANDA GADTIA

FINITE DIFFERENCES

INTERPOLATION

Thestudy of finite differences deals with the changes that take place in the bunction due to the binite change in independent variable

Let y=fine be the function.

x: no noth, notah, -- noth (Arguments)

y: yo y, y2 --- yn (Entrues)

h is the number by which the values of the argument advance is called the interval of differencing.

TYPES OF DIFFERENCES

- .) Forward differences (1)
- a) Backward differences (V)
- 3) Shift operator (E)

FORWARD DIFFERENCES

1st onder
$$\rightarrow [\Delta(f(x)) = f(x+h) - f(x)]$$

$$e_{x'}$$
- $O\Delta(x) = x+h-x$

(a)
$$\Delta(\cos x) = \cos(\alpha + h) - \cos \alpha$$

$$= 9 \sin \frac{x+h+2}{2} \cdot \sin \frac{x-x-h}{2}$$

(3)
$$\Delta(tank) = tank(th) - tank$$

$$= \frac{\tan^{2}\left(\frac{x+h-x}{1+(x+h)x}\right)}{1+x^{2}+x^{2}h}$$

$$= \frac{\tan^{2}\left(\frac{h}{1+x^{2}+x^{2}h}\right)}{1+x^{2}+x^{2}h}$$

$$\Delta y_0 = y_1 - y_0$$
 $\Delta y_1 = y_2 - y_1$
 $\Delta y_2 = y_3 - y_2$
 $\Delta y_3 = y_3 - y_2$

$$\begin{aligned} & \in \mathbf{x} - 1 \quad \Delta^{2}(\cos 2x) = \Delta (\cos 2(a+h)) - \Delta(\cos 2x) \\ & = \Delta (\cos (a+h) + 2h) - \Delta (\cos 2x) \\ & = \left[\cos (a+h) + 2h - \cos (a+2h) \right] \\ & = \left[\cos (a+2h+2h) - \cos (a+2h) - \cos (a+2h) \right] \\ & = \cos (a+2h+2h) - \cos (a+2h) + \cos (a+2h) \\ & = \cos (a+2h+2h) - \cos (a+2h) + \cos (a+2h) \end{aligned}$$

$$\Delta^{2}y_{0} = \Delta y_{1} - \Delta y_{0}$$

$$\Delta^{2}y_{1} = \Delta y_{2} - \Delta y_{1}$$

$$\Delta^{2}y_{2} = \Delta y_{3} - \Delta y_{2}$$

Δ2yn-2 + Δyn-1- Δyn-2.

Similarly we can find different order of Forward differences:

71	4	Δ	Δ^2	V3
20th 20th 20th 20th	40 H 44 48	Δy0=4-40 Δy1=42-41 Δy2=43-42	1 4 5 - 14 - 14	Ay = 24 - 24

yo is called the leading term

Byo, Byo, Byo. - are called the leading difference.

1st order (fix): fix) - fix-h)

and order
$$\nabla^2(f(x)) = \nabla(f(x)) - \nabla(f(x+y))$$

$$\nabla^2 y_1 = \nabla y_2 - \nabla y_1$$

$$\nabla^2 y_3 = \nabla y_3 - \nabla y_2$$

$$\nabla^2 y_4 = \nabla y_4 - \nabla y_4$$

$$\nabla^2 y_4 = \nabla y_4 - \nabla y_3$$

Vyn= Vyn- Vyn-1

Similarly we can bind distrement order of Backward. diffrences. Little Testibuty of

BACKWARD DIFFERENCES TABLE

\sim	4	∇	V2	V
No	40	· 74=4-40	0	2 2
Hoth	41	Vy= 4-40	マチューマダンマガ	V3y3=V3y3-V42
20+2h	42	Vy2= y2-41 Vy3= y3-42	03 y = 0 y 3 - 0 y 2	
Not3h	43	Vy3 = 43-42	(A)	(I) I

of the state of the design of the design of

for the transfer of the

testa trops from parasers are followed a set of

DIFFERENCES OF A POLYNOMIAL

It fine) is a polynomial of degree n'
Then 1st order difference is a polynomial of degree n-1
and order difference is a polynomial of degree n-2.

nth order difference is a constant (n+1)th order difference is zero:

Note > if 'n' no of entries are given (40, 41, 42. 4n)

then we can forma (n-1) degree polynomial.

so its nth order dibberiences are reno.

SHIFT OPERATOR (E)

The shift operator (E) is defined as that operators which when applied to a function, increases the value of the argument (x) by one interval (h).

$$E f(x) = f(x+h)$$
 $E y_0 = y_1$
 $E f(x+h) = f(x+h)$ $E y_1 = y_2$
 $E f(x+h) = f(x+h)$ $E y_2 = y_3$

$$E^{2}(f(n)) = E(Ef(n))$$
 $E^{2}y_{0} = y_{2}$
 $= E(f(n+n))$
 $E^{2}y_{1} = y_{3}$
 $= f(n+2h)$

E2(f(xth)) -f(xtsh)

Similarly

$$E^{-1}(f(x+h)) = f(x+h)$$
 $E^{-1}(f(x+h)) = f(x)$
 $E^{-1}(f(x+h)) = f(x)$
 $E^{-1}(f(x+h)) = f(x)$

Here E is called es inverse shift operator.

```
Relation between the operators
(i) E = 1 + A on A = E-1
 (ii) E=1-0 ON V=1-E-1
  (iii) Δ=E∇ = ∇E
Proof (i) we know that
         \Delta f(x) = f(x+h) - f(x)
                = E f(x) - f(x)
              =(P-1)f(x)
       > A=E-1 ON E=1+A
 (ii) We know that .
         \nabla f(x) = f(x) - f(x+1)
               = f(x) - E^{\dagger}f(x)
               = (1-E) f(x)
     > V=1-E' OR E=1-V
(iii) We know that \nabla f(x) = f(x) - f(x+h)
               > E V fra) = Efra) - Efra-h)
                         = f(x+h) - f(x)
                      =\Delta f(n)
       .. EV=A -(1)
       again Efin) = finth)
         > DEfin) = Dfinth)
                    = f(n+h) - f(n)
                      = Dfin)
            :. VE = A - (2)
  From (1) and (2) \Delta = EV = VE
```

Ex-1 construct the forward differences for the data below: CK: 0 f(n): 1 1.5 2.2 31 4.6 Evaluate D3f(1) 14 m 201 12 0.5 0.2 1.5 0.7 2.2 0.2 0.9 MA341= B4(1) 3 3.1 1.5 4.6 Here f(0) = 1 $\Delta^3 f(i) = \Delta^2 \cdot (\Delta f(i))$ f(1)=1.5 f(2)=2.2 $= \Delta^2 \cdot (f(2) - f(1))$ f(3) = 3.1 $= \Delta^2 f(2) - \Delta^2 f(1)$ f(4) = 46 = D (Df(2)) - D (Df(1)) $= \Delta \left(f(3) - f(2) \right) - \Delta \left(f(2) - f(1) \right)$ = D f(3) - D f(2) - Df(2) + Df(1) = Af(3) - 2Af(2) + Af(1) = (f(4)-f(3))-2(f(3)-f(2))+(f(2)-f(1)) = f(4) - f(3) - 2f(3) + 2f(2) + f(2) - f(1)= f(4) - 3f(3) + 3f(2) - f(1)= 4.6 -3x3.1 +3x2.2 -1.5

> = 4.6 - 9.3 + 6.6 - 1.5 = 11.2 - 10.8 = 0.4

AV-VIII Blow Down

Ex-3 , 2 t U0 = 3 U1 = 12 U2 = 81 U3 = 2000, U4=100

Calculate 1400

$$80^{7} \Delta^{4} u_{0} = \Delta^{3} u_{1} - \Delta^{3} u_{0}$$

$$= (\Delta^{2} u_{2} - \Delta^{2} u_{1}) - (\Delta^{2} u_{1} - \Delta^{2} u_{0})$$

$$= \Delta^{2} u_{2} - 2 \Delta^{2} u_{1} + \Delta^{2} u_{0}$$

$$= (\Delta u_{3} - \Delta u_{2}) - 2(\Delta u_{2} - \Delta u_{1}) + (\Delta u_{1} - \Delta u_{0})$$

$$= \Delta u_{3} - \Delta u_{2} - 2 \Delta u_{2} + 2 \Delta u_{1} + \Delta u_{1} - \Delta u_{0}$$

$$= \Delta u_{3} - 3 \Delta u_{2} + 3 \Delta u_{1} - \Delta u_{0}$$

$$= (u_{1} - u_{3}) - 3(u_{3} - u_{2}) + 3(u_{2} - u_{1}) - (u_{1} - u_{0})$$

$$= (u_{1} - u_{3}) - 3(u_{3} + 3u_{2}) + 3(u_{2} - 3u_{1}) + u_{0}$$

$$= u_{1} - u_{1} - u_{3} + 6u_{2} - 4u_{1} + u_{0}$$

$$= u_{1} - u_{1} + u_{2} + 6u_{2} - 4u_{1} + u_{0}$$

$$= u_{1} - u_{2} + u_{2} + u_{2} + u_{3} + u_{3} + u_{4} + u_{4}$$

$$= u_{1} - u_{2} + u_{3} + u_{4} + u_{4} + u_{4}$$

$$= u_{1} - u_{2} + u_{3} + u_{4} + u_{4} + u_{4} + u_{4}$$

$$= u_{1} - u_{2} + u_{3} + u_{4} + u_{4} + u_{4} + u_{4}$$

$$= u_{1} - u_{2} + u_{3} + u_{4} + u_{4} + u_{4} + u_{4}$$

$$= u_{1} - u_{2} + u_{3} + u_{4} + u_{4} + u_{4} + u_{4}$$

$$= u_{1} - u_{2} + u_{3} + u_{4} + u_{4$$

Ex!-3 show that $\Delta^{3}y_{i} = 7459$.

Soil $\Delta^{3}y_{i} = \Delta^{2}y_{i+1} - \Delta^{2}y_{i}$ $= (\Delta y_{i+2} - \Delta y_{i+1}) - (\Delta y_{i+1} - \Delta y_{i})$ $= (\Delta y_{i+2} - \Delta y_{i+1}) - (\Delta y_{i+1} - \Delta y_{i})$ $= \Delta y_{i+2} - 2\Delta y_{i+1} + \Delta y_{i}$ $= (y_{i+3} - y_{i+2}) - 2(y_{i+2} - y_{i+1}) + (y_{i+1} - y_{i})$ $= y_{i+3} - 3y_{i+2} + 3y_{i+1} - y_{i} \quad (Proved)$

Ex-4. Form the table of backward differences of the bunction. $f(x) = x^3 - 3x^2 - 5x - 7$ for x = -1.01,2.3.4.5

$$\frac{801}{9} = \frac{1}{12} = \frac{3}{12} = \frac{3}{12}$$

X	14	V	∇^2	∇^3	A	75	√6	-
-1012345	-6 -1 -14 -2) -22 -11 18	-1 -7 -1 11 29	-6 0 6 12 18	6 6 6	0 0	0	0	

form a table of differences for the tunction $f(n) = x^3 + 5x - 7$ for x = -1, 0, 1, 2, 3, 4, 5.

Continue the table to obtain f(6)

Continue the table to obtain
$$f(6)$$

Solution: $f(x) = x^3 + 5x - 7$
 $y_0 = f(-1) = -13$
 $y_0 = f(0) = -1$
 $y_1 = f(1) = -1$
 $y_2 = f(2) = 11$
 $y_3 = f(3) = 35$
 $y_4 = f(5) = 143$

N	14	10	42	1 43	<u>\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ </u>
1	-13	6	0	,	
0	1-7	6	6	6	0
9	11	12	12	6	0
2	35	24	18	6 -	0
3	77	66	24	6 223	46= 239
5	143	y6-143	46-209	46-233	06.00
6	46	96		1 doants	1e'3' its

Since fin) is a polynomial ob degree 3.

Hence
$$y_6 - 239 = 0$$
 $y_6 = 239$
 $y_6 = 239$

Ex-6 By Forming a difference table find the missing values in the following table.

4: 1 3 9 ? 81 4: 40 41 42 - 84

Let the missing value is 43

214	Δ	1 1	<u>73</u>	Δ'_
0 1 3 2 9 3 4 81	2 6 43-9 81-43	4 43-15 90-243	y3-19 105-343	124-443

Here Four entries are given (40, 41, 42, 44) so y can be represented by a 3rd degree polynomial hence 4th order difference becomes zero.

· Hence the missing term is 31

missing values in the following table assuming that the fourth differences are equal to zero.

7: 0 5 10 15 20 25 7: 6 10 - 17 - 31

8. 6 10 - 17 - 31

Sol Let the missing values are 42 and 44

20	y	Δ	Δ^2	∇3 -	Δ4
0 5 10 15	6 10 42	4 42-10 17-42	42-14 27-242 44+42-34	41-342 44+342-61	44+642-102 143-444-442
20 25	31	31-44	48-44-44	82-344-42	

Given Fourth differences are equal to zero

Solving (and 2 .

Dutting 42 in eq 0

801 Let the missing values are 44 and 46

x 4	Δ	A2.	A 3	_4	∆5
0 5 1 11 2 22 3 40 4 94 5 14	140-40	5 7 44-58 180-244 46+44-280	2 34-65 238-334 36+334-460	34-67 303-474 46+644-698	370-574 46+1074-1001

Here Five entries yo. 41. 42, 43, 45 are given the bunction y can be represented by 4th degree Polynomial and beck hence 5th difference becomes 7200. $\Delta^5=0$

and yo + 10 y4 - 1001 = 0 - 2

Putting
$$44 = 74$$
 in eq (2)
 $\Rightarrow 46 + 10 \times 74 - 1901 = 0$
 $\Rightarrow 46 + 740 - 1001 = 0$
 $\Rightarrow 46 - 261 = 0$
 $\Rightarrow 46 = 261$

INTERPOLATION

Let for the function y=f(x), the values of y are given for equidistant values of x as follows

The process of finding the value of y connesponding to any value of x between no and ren is called.

Interpolation

1. Newton's forward interpolation formula:

where
$$x = x_0 + ph$$

$$\Rightarrow p = \frac{x - x_0}{h}$$

Find the value of f(1.6) = t

y: 3.49 4.82 5.96 6.5

n		-			- 14.55		AS III
801	X	y	Δ	Δ^2	Δ3	(40)	
Hene h=0.4	1.4	4.82 5.96	1.14	-0.19	0.41	ne.	h= 1.4 h=0.4
	3.9	6.5	0.54		,81	-5 (4	1 14 = 1

Here
$$x = 1.6$$
 $x_0 = 1$. $y_0 = 3.49$ $\Delta y_0 = 1.33$ $\Delta^2 y_0 = -0.19$ $\Delta^2 y_0 = -0.19$

$$f(n) = y_0 + p_0 y_0 + p_0(p-1) \Delta^2 y_0 + p_0(p-1)(p-2) \Delta^3 y_0$$

$$f(1.6) = 3.49 + 1.5 \times 1.33 + (1.5)(1.5-1).(-0.19) + (1.5)(1.5+1)(1.5-2)$$

$$= 3.419 + 1.9950 + 0.00256$$

$$= 5.4394 \text{ (Ans)}$$

$$= x_0 + y_0 + y_0$$

Δ440=-1 Δ540=0

 $P = \frac{x - x_0}{h} = \frac{8 - 0}{5} = 1.6$

fox)= yo+ PAYO+ P(P-1) AZYO + P(P-1)(P-2) AZYO + P(P-1)(P-2) (P-3) AZYO

$$f(8) = 7 + 1.6 \times 4 + (1.6)(1.6-1) \times (-1) + (1.6)(1.6-1)(1.6-2) \times 2$$

$$+ (1.6)(1.6-1)(1.6-2)(1.6-3) \times -1$$

7 + 6.4 -0.4800 -0.1280 -0.0224 = 12.7696 50111 6x-3 using Newton's Forward interpolation formula find y when x=1.4 et 2: 1.1.1.3 1.5 1.7 1.9 y: 0.21 0.69 1.25 1.89 9.61

201

7	4	Δ	Δ^2	Δ3	4	I
1.3	0.2) 0.69 1.25 1:89 2.61	0.48	0.08	0	0.	

Here 2=1.4, h=0.2, y0=0.21, By0=0.08 $P = \frac{\chi - \chi_0}{h} = \frac{1.4 - 1.1}{0.2} = \frac{0.3}{0.2} = 1.5$

f(x) = yo + P Dyo + P(P-1) Dyo

= 0.21 + 1.5 × 0.48 + (1.5)(1.5-1) × 0.08

= 0.21 + 0.72 + 0.03

Ex-4) using Newton's Foreward interpolation formula find f (1.28)

of f(1.15)= 61.0723, f(1.20)=1.0954

f (125) = 1.1180 & f(1.30) = 1.1401 Here x: 1-15 1.20 1.25 1.30

80 ution

4: 1.0723 1.0954 1.1180 1.1401

×	y	Δ	Δ^2	_ ₹3	NII.
1.20	1.0723	0.0231	-0.0005	0	
1.30	1-1401		- a		

$$P = \frac{\chi - \chi_0}{h}$$
= 1.28 - 1
0.05

Polynomial fore the following data...

X: 4 6 8 10 1 4 4 4 5 4 6 8 16

Hence evaluate x=5.

Y	y	Δ	∆ ²	∆3
4	1	(2)		
6	3	5	(3)	0
8	8	9	3	
10	16	0		

Here
$$x_0 = 4$$
, $y_0 = 1$ $\Delta y_0 = 2$ $\Delta^3 y_0 = 3$
 $h = 2$
 $P = \frac{\chi - \chi_0}{h} = \frac{\chi - 4}{2}$
 $f(x) = y_0 + P \Delta y_0 + \frac{P(P-1)}{2} \Delta^2 y_0$
 $= 1 + \frac{\chi - 4}{2} \times 2 + \frac{(\chi - 4)}{2} (\frac{\chi - 4}{2} - 1) \times 3$
 $= 1 + \chi - 4 + \frac{3}{2} (\frac{\chi - 4}{2}) (\frac{\chi - 4}{2})$
 $= \chi - 3 + \frac{3}{2} (\chi^2 - 10\chi + 24)$

 $= \chi - 3 + \frac{1}{8}(\chi - 10\chi + 24)$ $= \chi - 3 + \frac{1}{8}\chi^{2} - \frac{30}{8}\chi + \frac{13}{8}$ $= \frac{3}{8}\chi^{2} + \chi - \frac{30}{8}\chi + 9 - 3$ $= \frac{3}{8}\chi^{2} - \frac{32}{8}\chi + 6$ $= \frac{3}{8}\chi^{2} - \frac{32}{8}\chi + 6$ $= \frac{3}{8}(5) = \frac{3}{8}(5) - \frac{11}{4}(5) + 6$

 $= \frac{3}{2} x^{2} - \frac{11}{4} x + 6$ = 1.625 (Ans)

NEWTON'S BACKWARD INTERPOLATION FORMULA

$$P = \frac{\chi - \chi n'}{h}$$

Ex-1 using Newtons Backward foremula find the value of f(105) et x: 80 85 90 95 100
y: 5026 5674 6362 7088 7854

11111

= 7.11

x y		∇^2	∇^3	74
80 5026 85 5674 90 6362 95 7088	648 688 726 766	40 38 40 79n	-2 2 734n	4 Vign

Herre Nen=100, yn=7854 Dyn=766 dyn=40, dyn=2

Given x=105, h=5

$$P = \frac{x - 20}{h} = \frac{105 - 100}{5} = 1$$

f(x)= yn+ p vyn + p(p+1) vyn + p(p+1)(p+2) vyn + p(p+1)(p+2)(p+3) vyn + 2!

19

Ex-2 using Newton's Backward interpolation Formula find y when x=4.5 34 37 11+ 11-1 30 Herre Den= 4, yn=37, Dyn=3 D2yn=-1 D3yn=-2 Given x=4.5 h=1 fix) = yn + Poyn + P(P+1) Vyn + P(P+1)(P+2) Vyn f(4.5) = 37 + 0.5 x3 +0.5 (0.5+1) x(-1) +0.5 (0.5+1)(0.5+2) x(-2) = 37 + 1.5 P - 0:3750 + 0.6250

A recommendate of the second s

extend to a set of the set of the

121 . 3 M. X. 11 10/3

N T SE T. DE H DOLL FREE .

(10 1003)=

= 37.5 (Ans)

Find the cubic polynomial using Newton's Backwarrd interpolation formula it 2 1 10 Hence evalute f(4)

Here 2n=3, yn=10, Vyn=9, V2yn=10 V3yn=12 $p = \frac{\chi - 2\eta}{h} = \frac{\chi - 3}{1} = \chi - 3$

f(a)= yn+ p Dyn + p(p+1) Dyn + p(p+1)(p+2) Dyn

= 10 + $(x-3) \times 9 + (x-3)(x-3+1) \times 10 + (x-3)(x-3+1)(x-3+2) \times 12$

=10+9x-27+(x-3)(x-2)x5+(x-3)(x-2)(x-1)x2

= 9x-17 + 5 (x2-5x+6) + 2(x-1) (x2-5x+6)

= 9x-17 +5x2-25x +30 + (27-2) (x2-5x+6)

= $5x^2 - 16x + 13 + 2x^3 - 10x^2 + 12x - 2x^2 + ...$

$$f(4) = 2x4^{3} - 7x^{2} + 6x + 1$$

$$f(4) = 2x4^{3} - 7x4^{2} + 6x4 + 1$$

$$= .128 - 112 + 24 + 1$$

$$= .153 - 112$$

$$= .41 (Ans)$$

LAGRANGE'S INTERPOLATION FORMULA

Then $f(x) = \frac{(\chi - \chi_1)(\chi - \chi_2)(\gamma - \chi_3) - \cdots (\chi - \chi_n)}{(\chi_0 - \chi_1)(\chi_0 - \chi_2)(\chi_0 - \chi_3) - \cdots (\chi_0 - \chi_n)} \times y_0$ $+ \frac{(\chi - \chi_0)(\chi - \chi_2)(\chi - \chi_3) - \cdots (\chi - \chi_n)}{(\chi_1 - \chi_0)(\chi_1 - \chi_2)(\chi_1 - \chi_3) - \cdots (\chi_1 - \chi_n)} \times y_1$ $+ \frac{(\chi - \chi_0)(\chi - \chi_1)(\chi - \chi_3) - \cdots (\chi_1 - \chi_n)}{(\chi_1 - \chi_0)(\chi_2 - \chi_1)(\chi_2 - \chi_3) - \cdots (\chi_2 - \chi_n)} \times y_2$ $+ \frac{(\chi - \chi_0)(\chi - \chi_1)(\chi_2 - \chi_3) - \cdots (\chi_2 - \chi_n)}{(\chi_2 - \chi_3)(\chi_2 - \chi_3) - \cdots (\chi_2 - \chi_n)}$

+ (x-x0)(x-x1)(x-x2)(x-x3)---(x-2n-1)xyn (2n-x0)(xn-x1)(xn-x2)(xn-x3)---(2n-2n-1)

· 11 Fac + 12 Fac

I St x I - V (to - b) I did he had be a - C - th C - c -

en in the King of Mary and a filter of the King of the

THAT PRITE THE TONE

1 - 1 - 0 - 12 -

Example-1 Use Lagrange's interpolation formula to bind the value of y when x=10 =5 y: 12 13 14 16 801 Given 20=5, 24=6, 22=9 23=11 yo=12 4=13 y2=14 y3=16 f(x) = (x-24) (x-22)(x-23)xy0 + (x-20)(x-2)(x-23)xy (x0-x1) (x0-x2) (x0-x3 (24-26) (21-22) (21-23) + (x-x0) (7-21) (7-23) x y2 +(x-x0)(x-21)(x-x2) x y3 (x2-x0) (x2-21) (x2-x3) (x3-20)(x3-21)(x3-x2) $f(10) = (10-6)(10-9)(10-11) \times 12 + (10-5)(10-9)(10-11) \times 13$ (6-5) (6-9) (6-11) (5-6) (5-9) (5-11) + (10-5) (10-6) (10-11) x14 + (10-5) (10-6) (10-9) x16 (11-5) (11-6) (11-9) (9-5) (9-6) (9-11) 4 x 1 x -1 x 12 + 5x 1 x -1 x 13 -1 x -4 x -6 - 1 x -3 x -5 $+\frac{5 \times 4 \times -1}{4 \times 3 \times -2} \times 14 + \frac{5 \times 4 \times 1}{6 \times 5 \times 2} \times 16$ $= 2 - \frac{13}{3} + \frac{35}{3} + \frac{16}{3}$ 2 + 300 - 3 - 5 = 44 = 14.66

Ex-2 it y(1)=-3 y(3)=9 y(4)=30, y(6)=132 lusing Lagrange's Interpolation foremula find 4(5) 801 Given $x_0=1$ $x_1=3$ $x_2=4$ $x_3=6$ yo=-3 y1=9 y2=30 y3=132 +(x) = (x-x1)(x-x2)(x-x3) xy0 + (x-x6)(x-x2)(x-x3) xy1 (x0-x1) (x0-x2)(x0-x3) (x1-x0)(x1-x2)(x1-x3 + (x-20)(x-21)(x-23) xy2+(2-26)(x-24)(x-22)xy3 (x2-x0)(x2-x1)(x2-x3) (x3-x0)(x3-x1)(x3-x2) $f(5) = (5-3)(5-4)(5-6) \times -3 + (5-1)(5-4)(5-6) \times 9$ $(1-3)(1-4)(1-6) \qquad (3-1)(3-4)(3-6)$ + 6-1)(5-3)(5-6) x30 + (5-1)(5-3)(5-4) x132 (4-1) (4-3) (4-6) (6-1) (6-3) (6-4) $= \frac{2 \times 1 \times -1}{2 \times -3 \times -5} \times -3 + \frac{4 \times 1 \times -1}{2 \times -1 \times -3} \times 9$ + 4x2x-1 x30 + 4x2x1 x 132 5x3x2 = - = - 6 + 40, + 176 = -0.2 -6 +40 + 35.2 = 69 Ans.

Ex'-3 using Lagrange's interepolation foremula find a polynomial it x: 0 2 3 7: -4 2 14 801 Given 20=0 21=2 2=3 yo=4 y1=2 y2=14 $f(x) = (x - x_1)(x - x_2) \times y_0 + (x - x_0)(x - x_2) \times y_1$ $(x_0 - x_1)(x_0 - x_2) + (x_1 - x_0)(x_1 - x_2)$ + (x-20)(x-24) xy2 $f(x) = (x-3)(x-3) \times (-4) + (x-0)(x-3) \times 2$ $(0-2)(0-3) \times (-4) + (x-0)(x-3) \times 2$ + (x-0)(2-2) ×14 $= \frac{\chi^{2} - 5\chi + 6\chi(-4)}{6} + \frac{\chi(\chi - 3)}{3\chi - 1} \times 2 + \frac{\chi(\chi - 2)}{3\chi - 1} \times 14$ $= -\frac{3}{3}(x^2 - 5x + 6) - (x^2 - 3x) + \frac{14}{3}(x^2 - 2x)$ = -= 22+102 -12 - 22+3x + 14x2-28x = 14 22-32-22+ 197+32-28 x-4. $= \frac{14x^2 - 2x^2 - 3x^2}{3} + \frac{10x + 9x - 28x}{3} - 4$ = 922 7 99 -4 = 3x2-3x-4 (Ans)

LAGRANGE'S INVERSE INTERPOLATION FORMULA

Jo evaluate x when y is given

Let x = xo x, x2 --- 2n

y = yo y y2 --- yn

Then x = (y-y1)(y-y2)-- (y-yn) x xo

(yo-y1)(yo-y2)-- (yo-yn)

+ (y-yo)(y-y2)-- (y-yn) x xy

(y-yo)(y1-y2)-- (y1-yn) x xy

(y-yo)(y1-y2)-- (y1-yn)

+ (y-yo)(y-y1)(y-y3)--- (y-yn) x xy

(y2-yo)(y2-y3)--- (y2-yn)

(gn-yo) (y-y1) (y-y2) -- (y-yn-1) xxn (gn-yo) (yn-y1) (yn-y2) -- (yn-yn-1)

Example (1) Apply Lagrange's method inversely to find newhen y=15 = +

y: 12 13 14 16

Boll Given 120=5 24=6 2=91 \$ 23=11 40=12 41=13 42=14 43=16

$$\begin{aligned}
\eta &= \frac{(4-4_1)(3-4_2)(3-3_3)}{(3-3_1)(3-4_2)(3-3_3)} \times x_0 + \frac{(3-4_2)(3-4_3)}{(3-4_2)(3-4_3)} \times x_1 \\
&+ \frac{(3-4_2)(3-4_1)(3-4_3)}{(3-4_2)(3-4_2)(3-4_2)} \times x_2 + \frac{(3-4_2)(3-4_2)(3-4_2)}{(3-4_2)(3-4_2)(3-4_2)} \times x_3 \\
\chi &= \frac{(15-13)(15-14)(15-16)}{(12-14)(12-14)} \times 5 + \frac{(15-12)(15-14)(15-16)}{(13-12)(13-14)(13-16)} \times 6 \\
&+ \frac{(15-12)(15-13)(15-16)}{(14-12)(14-13)(14-16)} \times 9 + \frac{(15-12)(15-13)(15-14)}{(16-12)(16-13)(16-14)} \times 11 \\
&= \frac{2\times1\times-1}{1\times-2\times-4} \times 5 + \frac{3\times1\times-1}{1\times-1\times-3} \times 6 + \frac{3\times2\times-1}{2\times1\times-2} \times 9 \\
&+ \frac{3\times2\times1}{1\times3\times2} \times 11 \\
&= \frac{5}{4} - 6 + \frac{27}{2} + \frac{11}{4}
\end{aligned}$$

$$= \frac{5}{4} - 6 + \frac{27}{2} + \frac{1}{4}$$

$$= \frac{5 - 24 + 54 + 11}{4}$$

$$= \frac{46}{4}$$

$$= \frac{11.5}{4}$$

Ex-2 Apply Lagranges Foremula inversely to. obtain a root of the eq fm)=0, given that f(30) = -30, f(34) = -13, f(42)=18 801 Given No=30 12=34 12=42 yo=-30 Ty=-13 Y2=18 we have to bind react of the eg fin)=0 i.e to bind value of 2 when y=0 x= (y-41)(y-42) xx0+(y-y0)(y-42)xx1+(y-y0)(y4)x22 (Jo-41) (yo-42) (yr-40) (yr-42) (yr-42) (yr-40) (yr-40) $= (0+13)(0-18) \times 30 + (0+30)(0-18) \times 34 + (0+30)(0+13) \times 42$ $(-30+13)(-30+8) - (-13\pm30)(-13-18) - (18\pm30)(18\pm13)$ $= \frac{13 \times -18}{-17 \times -48} \times 30 + \frac{30 \times -18}{17 \times -31} \times 34 + \frac{30 \times 13}{48 \times 31} \times 42$ = -8.6029 + 34.8387 + 11.008) = 37.2439 Ans.

Pit Hart

NUMERICAL INTEGRATION

The preocess of evaluating a definite integral from a set of tabulated values of the integrand fix) is called numerical integration.

This process when applied to function of a single variable is called QUADRATURE

The approximate value of an integral can be found by following Foremula.

Newton-cotes Quadrature Formula

By putting n=1 and neglecting all higher orders.

differences starting from 240 on wards.

weget

TRAPEZOIDAL RULE

By Putting n=2 and neglecting all higher order dibbrenences starting from Dyo on wards

SIMPSON'S J RULE

Notes > *
$$\chi_0 = Lowere$$
 dimit of the integral

* $\chi_0 = Lowere$ dimit of the integral

Ex-2 Evaluate J dr using (i) Trapezoidal Rule (ii) Simpson's I Rule taking h= /4 Hence compute an approximate value of T in both cases Given h= = = 0.25 (i) Trapezoidal Rule Jan = h [40+44 + 2(41+42+ 73)] - 0.25 [1+0.5 +2 (0.9412 + 0.8 +0.64)] 0.9412 0.25 0.5 =0.25 [1.5+2(2.3812)] 0.64 773 0.75 =0.25 [1.5 + 4.7624] 0.5 +34 = 0.7828 Henre J dn = 0.7828 > [+an/x] = 0.7828 > +an1 - +an10 = 0.7828 7 1/4 -0 = 0.7828 > T = 4 x0.7828 77 = 3.1312 (ii) Simpsons & Rule Jan = 13 [40+44+4(4+43)+2(42)] = 0.25 [1+0.5 +4 (0.9412+0.64) +2(0.8)] =0.25 [1.5 + 6.3284 + 1.6] J dy = 0.7857 Hence Ny = 0.7857 > 7 = 4×0.7857 = 3.1498

Q3. Find an approximate value of loges Calculating to 4 decimal places by simpson's I reute dividing the stange into 10 equal parts $h = \frac{\chi_n - \chi_0}{10} = \frac{5 - 0}{10} = \frac{1}{2} = 0.5$ 201 0.2 10 0.1429 77 0:1111 -> 72 0.0909 0.0769 0.0666 0.0588 0.0526 777 3.5 0.0476 > 38 0.0435 7 79 0.04 +> 410 = 4 [40+410 + 4(31+43+45+47+44)+2(42+44+46+48)] = 0.5 [0.2+0.04 + 4(0.1429 + 0.0909 + 0.0666 + 0.0526 + 0.0435) + 2 (0.1411 +0.0769 +0.0588 +0.0476) =0.5 [0.24 + 1.5860 + 0.5888] .. \$ \frac{dn}{4715} = 0.4023 \Rightarrow \frac{1}{4} \left[log_{4} (4x+5) \right]_{0}^{5} = 0.4023 > [loge 25 - logs] = 0.4023 > loges = 4 × 0.4023 > loges = 1.6092

Ex-4 Use simpsons & Rule find o's ex-dx by taking seven ordinates. Solution we have to take 7 ordinates -that means n=6 $h = \frac{\chi_0 - \chi_0}{\chi_0} = \frac{0.6 - 0}{6} = 0.1$ 0.99 0.1 0.9608 0.2 0.3 0.9139 0.8521 0.4 0.5 0.7788 0.6 0.6977

$$\int_{0}^{2} e^{2^{2}} dx = \frac{h}{3} \left[y_{0} + y_{6} + 4(y_{1} + y_{3} + y_{5}) + 2(y_{2} + y_{4}) \right]$$

$$= \frac{0.1}{3} \left[1 + 0.6977 + 4(0.99 + 0.9139 + 0.7788) + 2(0.9608 + 0.852) \right]$$

$$= \frac{0.1}{3} \left[1.6977 + 10.7308 + 3.6258 \right]$$

$$= 0.5351 \text{ Am}$$